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ABSTRACT 

The goal of this dissertation is to develop methods that can be used to 

systematically, consistently and logically generate uncertainty distributions that do not 

assume randomness in the system. Uncertainty is pervasive in all systems; even more so 

in systems such as risk assessment where information is accumulated from varied sources 

that are inherently complex and where the parameters of the system cannot be assumed to 

be random due to data insufficiencies.  On the other hand, though non-probabilistic 

methods have been shown to be excellent tools to capture non-random uncertainty their 

application has been limited by their inability to offer methods for deriving distributions 

from empirical data. The motivation behind this dissertation is to find new models to 

overcome the difficulties inherent in the ability of probability theory to model non-

random uncertainty, and to adapt these new models to capture both random and non-
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random uncertainty as empirical possibility distributions.  Two novel methods based on 

possibility theory are proposed to represent uncertainty in systems.  

The property of consonance in data, where evidence leads an expert/model to 

inductively make judgments that converge to one possible outcome, is assumed in the 

development contained herein.  Crisp notions of classical logic with a truth-value of 

either 0 or 1 (assuming complete evidence) on disjoint sets/outcomes ( Ai ∩ A j = ∅ ) are 

replaced by softer notions where truth-values that range between 0 and 1 are defined over 

overlapping sets/outcomes ( ∅≠∩ ii AA ).  The new methods exploit set-based 

mechanisms such as interval analysis and cluster analysis to accomplish the task of 

deriving possibility distributions and to quantitatively represent imprecise knowledge. 

Relaxation of the axiom of additivity with the proper assumption of sub-additivity, allows 

the developments made here to represent inexact, imprecise, incomplete, and incoherent 

information in a more realistic and consistent manner.  Two novel approaches for 

deriving possibility distributions are developed in this dissertation: i) Method I is used for 

non-consistent and non-disjoint data intervals; and ii) Method II is used for point 

estimates and disjoint data intervals. The new methods are illustrated through two case 

studies in human health risk assessment of radon gas exposure.  
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Chapter 1 Introduction 

 

In the modeling of any complex system one is almost always faced with the 

challenge of balancing costs with precision, usually sacrificing one for the other.  In such 

circumstances a decision-maker has to contend with information that is incomplete, 

imprecise and uncertain, and is compelled to make decisions in a manner that is most 

appropriate and judicious.  Lack of data and increasing costs of acquiring on-site and off-

site data, constraints on time and the necessity to use information from varied sources 

(other experiments, expert judgments, and other structural information of the product 

being tested), pushes decision-makers to analyze associated uncertainties systematically 

and rigorously.  Greater access to computational methods and the need for automating 

inference machines has driven the development of quantitative models that efficiently 

blend sparse empirical data with qualitative information.  In this regard, quantitative 

methods have been developed in multiple areas of uncertainty analysis.  In the 

probabilistic area, methods have been developed to include subjective information in 

uncertainty models thereby allowing an analyst to use expert judgments to fill in for 

missing data [Savage, 1976].  In non-probabilistic areas, theories such as evidence theory, 
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fuzzy set theory and possibility theory [Shafer, 1976; Zadeh, 1965; Dubois and Prade, 

1988] have been developed to represent vague and ambiguous data.  Technologies such 

as neural networks and genetic algorithms are being used more consistently to model 

complex artificial intelligence systems and systems based on non-monotonic reasoning 

are being pursued to develop knowledge-based systems [McDermott and Doyle, 1980].  

 

1.1 Traditional First-Order Uncertainty Analysis 

Traditionally, probability has been the predominant theory for modeling 

uncertainty in science and engineering, with the word uncertainty almost always 

synonymously associated with the word probability.  A recent INSPEC search on 

“Title/Subject/Abstract” for the word “probability” for the period 1970-2003 yielded 

170561 articles, as opposed to 34621 articles containing phrases such as fuzzy 

logic/fuzzy sets/possibility theory.  Probability theory has been in existence for more than 

two centuries while non-probabilistic theories have been around for less than four 

decades, and hence this was expected; probability theory is a much more mature theory 

and technologists are more accustomed to its use.  The debate is, however, not on the 

relevance or use of probability theory, but whether it is the right model to capture all 

forms of uncertainty.  In classical probability theory one models uncertainties by 

assuming that the state of the world is defined by probability distributions depicting the 

randomness in systems, or, as Bayesians suggest, by depicting people’s subjective beliefs 

in terms of the probability axioms.  A long-standing interpretation of classical probability 

is that these distributions represent long run frequencies in a series of repeatable trials 
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[Von Misses, 1964].  Within the probability community, this definition has been 

challenged over the years as the need to build probability estimates from limited data and 

the need to include expert judgments became more urgent [Savage, 1976].   Inclusion of 

subjective expert data required modifying the definition of probability to transfer the state 

knowledge from the object to that of the observer, where the probabilities are more 

subjective and can be updated using Bayes' theorem of conditionalization.  The essence 

of this theorem is that it allows one to update previously known or assumed probabilities 

(known as priors) as more information becomes available or as the state of the event for 

which the probability is being estimated changes with the realization of other events.  

This concept, that the probabilities can be updated with the availability of more data, 

lends the personalistic view of probability an advantage in that it enables one to estimate 

probabilities even in the absence of experimental data.  This view, however, even if it is 

more amenable to modeling random behavior of the system from sparse data, still fails to 

capture all uncertainty.  Due to its assumption of randomness and the dependence on the 

fundamental axiom of additivity, probability theory requires one to generate estimates 

that assume more information than what is available.  Moreover, when very limited 

information is available, characteristics that are required by probability distributions, such 

as the shape and scale parameters, are rarely known with precision.  

 

1.2 Second-Order Uncertainty Analysis 

The recognition that point estimates insufficiently characterize uncertainty has 

resulted in using hierarchical models that attempt to alleviate the problem of point 
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estimation by specifying a second-order distribution on them.  The form and nature of the 

models to derive and represent these second-order uncertainties has received much 

attention in the past few decades.  These methods have ranged from those with strict 

probabilistic notions, such as Bayesian methods, probabilistic dependency bounds 

[Williamson and Down, 1990], to the application of such non-probabilistic theories as 

fuzzy set theory [Zadeh, 1965], evidence theory [Shafer, 1976] and more recently to the 

development of possibility theory [Dubois and Prade, 1988], theory of imprecise 

probabilities, and the theory of previsions [Walley, 1991; de Cooman, 2002].  The 

essence of these methods is that the first-order probabilistic estimates such as the mean or 

variance are no longer point estimates but are defined as a range of values.  These values 

can be characterized as probabilistic distributions as used in Bayesian models or can be 

imprecise probabilities or vague estimates that are characterized by fuzzy sets.  

 

1.3 Fuzzy Sets 

Non-random uncertainty includes uncertainty arising out of vagueness in the 

description of the events, ambiguity in the identification of the occurrence of an event 

and the inability to completely characterize the occurrence of all the events in the 

universe of discourse. Inability of probability theory to model these other sources helped 

support the development of fuzzy set theory.  Fuzzy set theory was initially developed to 

model subjective linguistic variables and has evolved over the past three decades into a 

mature method for uncertainty analysis. The essence of this theory is that it models 

vagueness in propositions.  For example, a risk analyst could provide an estimate for the 
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magnitude of contamination as being "approximately 50 ppm" or determine the risk from 

being exposed to that approximate concentration to be "around 1E-04."  Fuzzy set theory 

(FST) provides the calculus to quantify and use such a vague estimate in models. Though 

FST is useful in modeling the vagueness, it suffers from drawbacks that are similar to 

probability theory, in that it does not support all the sources of uncertainty, vis-à-vis 

randomness and ambiguity.  There have been attempts, similar to the concept of second-

order uncertainty analysis, to combine the two by modeling random behavior using 

probability theory and then using fuzzy logic and fuzzy arithmetic to model the 

vagueness in the probability estimates [Cooper and Ross, 1998].  The resulting 

uncertainty measures consist of an envelope of probability distributions at various levels 

of an analyst's “index of sureness” or a set of probability estimates resulting in a fuzzy 

membership function over the set of probabilities.  This method of combining fuzziness 

and randomness, however, does not provide methods for the updating schemes and a 

consistent method to derive the distributions.  An alternative to this approach is to use a 

model that provides inference mechanisms that can be used to directly elicit and represent 

uncertainties from incomplete and imprecise evidence.  

 

1.4 Possibility Theory  

Recently developed as an extension of evidence theory and fuzzy set theory, 

possibility theory provides a framework for a derivation of uncertainty when evidence is 

ambiguous and vague.  It is especially useful when information is insufficient to warrant 

modeling randomness in the system.  An interpretation of possibility theory can be 
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provided either by considering it a subset of Dempster-Shafer theory (also known as 

evidence theory), wherein belief functions are based on nested event structures, or a 

natural extension of fuzzy set theory wherein the membership functions define a 

possibility distribution.  In evidence theory, Shafer extends the concept of lower and 

upper probabilities [Dempster, 1968] to model uncertainty measures as degrees of belief 

that are mathematically defined over sets of overlapping or non-overlapping events.  In 

contrast to Dempster who views probabilities as aleatoric concepts, Shafer [1976] 

considers them as epistemic degrees of belief that are based on the subjects’ belief or 

doubt in the occurrence of an event.  This idea of epistemic belief allows evidence theory 

to model beliefs according to the reliability and accuracy of evidence supporting a 

particular proposition.   This supporting evidence defines the weights or masses allocated 

to a set of propositions and then these weights can be combined to yield the combined 

belief for the corresponding set.  For example, if the proposition was to determine the 

slope factor for a certain carcinogenic compound and some evidence showed that it was 

between 0.5 and 1.5, but other evidence also indicates that the value could be between 0.4 

and 0.8, and still other evidence indicates it to be between 0.7 and 1.2, and so on, then, 

based on this information, an analyst can determine the two measures, belief and 

plausibility (defined in Chapter 3), for a proposition such as 'the value is between 0.6 and 

1.2' using the calculus provided by evidence theory.  These measures are analogous to the 

lower and upper bound probabilities.  In contrast to evidence theory wherein these 

intervals can be partially overlapping, in possibility theory evidence is assumed to reveal 

information leading to only a consonant (nested intervals) set of propositions.  In this 

theory, necessity and possibility measures are analogous to the belief and plausibility 
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measures, respectively.  When considered as an extension of fuzzy set theory, possibility 

distributions are directly linked to fuzzy membership functions [Zadeh, 1978; Dubois and 

Prade, 1988]; however, it is not in this context that we use possibility in this dissertation. 

One of the stated advantages of possibility theory is that it allows the analyst to 

acquire subjective as well as objective information in a form that is consistent with 

cognitive thought [Joslyn, 1994].  This is especially advantageous when the amount of 

information available is very limited and subjective judgments play an important role in 

estimation.   

 

1.5 Risk Assessments and Uncertainty 

.   In a complex process such as risk assessment, it is extremely expensive, labor 

intensive, and time consuming to obtain information to support an exact simulation.  In 

the absence of exact knowledge, an analyst is faced with the daunting task of choosing 

the most appropriate method for accounting for the uncertainties.  Formal uncertainty 

analysis in risk assessments is still new, with most progress having occurred in the last 

decade or so.  Uncertainties in health risk assessments were conventionally handled using 

conservative mechanisms such as default safety factors [NRC, 1994], 5th percentile 

probabilistic values and upper 95% confidence limits.  These methods that yield point 

estimates, however, have been found to have significant financial costs and 

methodological shortcomings associated with them.  For example, in non-carcinogenic 

risk assessment, the 10-fold safety factors applied to the reference doses lack firm 

biological basis and could in reality be higher or lower than a factor of 10 [Dourson and 
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Strata, 1983]. For exposure assessment analysis, it has been shown that the use of 95th 

percentile point estimates for various input variates (such as concentration of chemicals) 

can yield estimates of risk that are several orders of magnitude higher than those resulting 

from using entire distributions [Bogen, 1995; Burmaster and Harris, 1993].  In addition to 

these parametric uncertainties, there are a significant number of modeling uncertainties 

resulting from the inability to determine the right model for analyzing the potency of a 

chemical or determining the fate and transport of chemicals [Cornfield et al., 1980; NRC 

1994].  

In response to the increasing awareness of the drawbacks of the current methods, 

the context of models in risk assessment has drastically shifted from simplistic macro 

statistical models to molecular mechanistic models [Goddard and Krewski, 1995, 

Andersen, 1995; Hansch et al., 1995; Leung and Paustenbach, 1995]; and from 

conservative probability models yielding point estimates to more complete distributional 

models. On the mathematical front, scientists are attempting to improve the credibility of 

estimation by developing defensible numerical models that are more reflective of the true 

uncertainty; this includes the application of both the probabilistic methods [Burmaster, 

1994, 1995; EPA, 1997] and also some non-probabilistic methods, most based on fuzzy 

set theory [Bardossy 1991, 1993; Ferson, 1992, 1993].  Given the complexity of risk 

assessments and scarcity of data, there is justification for more significant growth in the 

application of non-probabilistic methods such as possibility theory. 

1.6 Contributions to the State-of-the-Art 

One of the limitations of possibility theory is the lack of methods for deriving 
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possibility distributions from empirical data. Though possibility distributions can be 

elicited with relative ease for subjective judgments, methods for their empirical 

derivation have been very limited.  Empirical measurements exist in almost all of science 

and engineering applications and the lack of methods for deriving possibility distributions 

restricts the use of possibility theory.  Some significant contributions for developing 

possibility distributions from general measurements have been made in recent years 

[Joslyn, 1994, 1996], however these methods derive distributions that are sufficiently 

characterized by consistent measurements (where measurements are not required to be 

nested intervals, but it is only sufficient that all the measurements intersect).  The intent 

of this dissertation is to extend these existing methods and to develop new methods for 

constructing set-based distributions that also satisfy the property of consonance 

(measurements reveal information focused on nested intervals).  Useable possibility 

distributions are generated from non-consonant measurements by making them consonant 

for three types of measurements: 1) when measurements are overlapping interval data 

(not necessarily consistent but are not disjoint); 2) when measurements are singletons; 

and 3) when measurements are disjoint intervals.  

Since the characteristics of overlapping interval data are fundamentally different 

from those of singletons or disjoint intervals, two separate methods are provided for each. 

Each measurement that is an overlapping interval corresponds to evidence that is focused 

on a collection of singletons, with each singleton being representative of a possible value 

and occurring in more than one interval.  Thus, possibility distributions for overlapping 

interval measurements should be such that they infer the most possible value as being 

generated by the interval that is most persistent through all the measurements.  Singletons 
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and disjoint sets, however, are disjoint and the possibility distributions infer the most 

possible value(s) as being the value(s) that have the highest possibility of occurring. The 

possibility structure for such measurements is derived such that each measurement is 

weighted according to its proximity to the most possible value.  Thus, possibility 

distributions for overlapping measurements are derived by considering intersections of all 

measurements while those based on disjoint or singleton measurements are derived using 

clustering techniques (see Chapter 3).  Possibility distributions thus derived are 

considered to be relevant substitutes to probability distributions or complementary to 

probability distributions.  The dissertation also presents an extensive review of 

uncertainty analysis in risk assessments and two case studies to illustrate the use of 

possibility theory to risk assessments. 

 

1.7 Outline 

The intent of the research leading up to this dissertation was to determine the state 

of art of uncertainty analysis in human health risk assessments and to explore the 

applicability of new uncertainty methods to risk models.  As part of this exploration 

process a thorough review of uncertainty in risk assessments was conducted.  The review 

examined the sources of uncertainty in all areas of risk assessment, current methods for 

handling these uncertainties, and their limitations.  In addition, two novel theoretical 

developments came out of this exploration, and these two are described in Chapter 3 (a 

method for constructing possibility distributions from non-consonant and non-consistent 

random intervals, and the construction of possibility distributions from point estimates). 
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Chapter 2 presents the results of the examination of sources of uncertainty in risk 

assessment. Risk assessment is a complex process consisting of four main areas: i) hazard 

identification; ii) exposure analysis; iii) toxicity assessment; and iv) risk characterization. 

While all the areas of risk assessment could encompass all the types of uncertainty, the 

magnitude of each type is specific to the area.  For example, in hazard identification, 

subjectivity and vagueness might be more prevalent, while in exposure characterization, 

randomness might be more dominant.  An analysis of the review resulted in identification 

of a number of areas in which non-probabilistic methods can be beneficial in aiding an 

analyst at an exploratory stage or at an advanced stage of risk analysis.  A sample of the 

areas in which these methods are already being used is presented in Section 2.2.2. 

Currently, the non-probabilistic methods have predominantly been those that are based on 

fuzzy set theory.  Though fuzzy set theory offers an effective model for representing 

uncertainties in risk assessments, it is most useful for representing uncertainties that are 

naturally expressed as linguistic variables rather than for representing uncertainty that 

results from not understanding an inferential mechanism.  

The purpose of Chapter 3 is to present possibility theory as a viable model for 

representing uncertainties that can be directly developed from empirical data.  The main 

emphasis of this chapter is to articulate the two theoretical developments discovered in 

the course of this research project, which both provide methods to systematically develop 

possibility distributions from measurements represented as overlapping intervals or from 

measurements that are disjoint such as point estimates or non-overlapping intervals. 

Development of these novel methods is essential in laying the groundwork for the 

application of possibility theory to risk analysis.  These methods enable one to develop 
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possibility distributions that can subsequently be used either as a substitute (first-order 

representations) for, or complementary (second-order representations) to, probability 

distributions.  

Chapter 4 presents a case study to illustrate the main points of the novel methods 

developed herein.  How an uncertainty analysis is conducted is in many ways dependent 

on what is being analyzed and what the impact of the analysis is.  In the various areas of 

risk assessments, uncertainty is sometimes reduced through rigorous applications of 

physical and biological models while in some cases the complex models are simplified. 

Due to its independence from the requirements of randomness and dependence on weaker 

axioms, possibility theory offers an adaptable mechanism for representing uncertainties at 

any level of risk assessment.  In Chapter 4, development of possibility distributions is 

illustrated through a previously conducted meta-analysis, which was based on a standard 

statistical approach.  There are a number of creative ways in which possibility theory can 

be used in risk assessments and the material in this dissertation addresses a small, but 

important, number of these.  

Finally, Chapter 5 presents the conclusions of this dissertation and identifies areas 

of future research that will advance the application of possibility theory to risk 

assessments and other scientific applications.     

 

 



 

 

 

 

 

Chapter 2 Uncertainty in Risk Assessment 

 

This Chapter presents the definitions of various uncertainty formalisms and the current 

state of the art of uncertainty analysis in risk assessments.  

  

 Uncertainty in the real world is of many types.  Many in the scientific community 

have construed these various types of uncertainty and its definition in various ways and 

have effectively distinguished one type from another to better aid in the modeling of 

uncertainty [Shafer and Pearl, 1990; Parsons and Hunter, 1998].  In general, it is 

understood that the many types of uncertainty arise from varied sources and are handled 

according to their origin.  To better model these various types of uncertainty, analysts 

usually segment uncertainty into three types: 1) uncertainty due to randomness - exists 

when evidence points to the occurrence of conflicting events, that is any of the events can 

occur with a given probability; 2) uncertainty due to vagueness - occurs due to the 

inability to define distinct boundaries for any set for which the uncertainty measure is 

being calculated; and 3) uncertainty due to ambiguity - the result of the indecision in 

assignment of an element to a given set, i.e., one is sure about the occurrence of an event 

but unsure about which one.  Amongst these various types, uncertainty due to 

randomness has been given the most attention, and historically has been studied 
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extensively using probability theory.  In contrast, uncertainty due to vagueness, usually 

represented by fuzzy sets, has been addressed in the literature in the recent past as 

compared to probability theory, and continues to distinguish itself as a separate paradigm 

from probability theory in the uncertainty it models; its main applications being in areas 

where vagueness plays a significant role - as in when modeling linguistic variables. 

Finally, ambiguity, which is a more subtle type of uncertainty wherein evidence is 

insufficient to assign the occurrence to any crisp event, has usually been handled using 

rough sets [Pawlak, 1982] and possibility theory.  In most applications all these forms of 

uncertainty can co-exist, hence, a more thorough model to blend these has resulted in 

research to conceptually fit the existing models to cases where all the forms exist.  In 

later sections two such models, evidence theory and possibility theory, are presented.  

 Before attempting to introduce the specifics of each of the uncertainty modeling 

theories, a brief summary of the uncertainty sources pertaining to risk assessment is 

presented.  A more thorough understanding of the sources of uncertainty helps demarcate 

the various representative types and aids the analyst in choosing the right tool to use.  

2.1 Sources of Uncertainty 

Within the risk assessment community it is broadly accepted that uncertainty can 

be a result of randomness, bias, or variability.  Randomness is distinguished from 

variability in that it arises from the imperfection in knowledge about the true value of the 

variable being measured, while variability, on the other hand, is the real variation of the 

property being measured among individuals [Hattis and Burmaster, 1994; Hattis and 

Silver, 1994].  For example, the heights of various individuals within a general 
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population can truly vary according to the gender, geographical location and age, while 

the heights of individuals picked randomly from the population within a specific 

category, such as men in North America, is a random quantity.  Thus uncertainty due to 

randomness can be better characterized by the collection of more data, while real 

variability will remain constant.  In some papers [Burmaster, 1994], the term uncertainty 

has been reserved specifically for uncertainty that arises from randomness.  Though 

uncertainty has been distinguished from variability, most previous works have not 

modeled each of these separately.  They are usually grouped together and modeled using 

probability theory.  Examples of such can be found in Hattis and Silver [1994], wherein 

the authors provide an illustration of inter-individual variability as determined in the 

uptake of a toxicant, systemic pharmacokinetic parameters, and the response observed. 

A classification by Morgan and Henrion [1990] organizes the sources of 

uncertainty in empirical quantities into seven categories: 1) statistical variation; 2) 

subjective judgment; 3) linguistic imprecision; 4) variability; 5) inherent randomness of 

the system; 6) approximation, due to simplification of the model; and 7) disagreement 

amongst the experts.  Statistical variation in measurements contributes to random errors 

indicating evidence focuses on disjoint events.  Even though the type of uncertainty most 

relevant to this seems to be randomness, the inadequacy of the measurement device to 

precisely measure the property can also lead to evidence that focuses on a collection of 

disjoint events that are sets of numbers rather than a single number.  While statistical 

variation can be considered to reflect the true property of the system, subjective 

judgments and inherent errors in instruments can result in systematic errors (deviation 

from the true value of the mean) that are properties of the measuring device.  Subjective 
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judgments are also inherently vague and non-crisp indicating evidence focusing on 

ranges of numbers (sets or intervals) rather than single numbers (singletons).  This leads 

to the next category, uncertainty due to linguistic imprecision, that is a result of the 

inability of the human mind to precisely define and communicate the occurrence of an 

event in crisp mathematical terms.  This uncertainty, due to the nature of the expression 

of linguistic variables, results mostly in uncertainty that is vague.  The next form of 

uncertainty, variability, in the same context as that defined in the earlier section, is the 

uncertainty arising due to the differences between individuals within a population.  Such 

uncertainty can result in non-specific uncertainty due to the fact that within one 

population there are multiple values that are all true.  For example if one is to determine 

the risks from exposure to a chemical X, multiple risk values are possible because the 

susceptibility of each sub-population to the chemical varies according to the 

characteristics of that sub-population (such as age, ethnicity, gender, etc).  Hence one is 

ambiguous about the risk value.  In contrast to variability, randomness inherent in the 

system is the true randomness exhibited by the system and hence as the term indicates, 

results in randomness.  In addition to the randomness and variability in the system, 

uncertainty from approximations results in modeling errors and do not necessarily 

contribute to any one specific type of uncertainty.  Finally, disagreement between experts 

is similar to acquiring uncertainty resulting from subjective judgments and can lead to 

uncertainty that is either fuzzy or ambiguous. As opposed to Morgan and Henrion’s 

classification, which is more general, Bogen [1990] provides an in-depth classification of 

uncertainty according to the step at which it occurs in the risk assessment process.  This 

classification differs from others in that Bogen tries to identify uncertainties arising at 



 

17 
 

 

each stage of health risk assessment instead of defining the character of uncertainty itself 

[Table 2-1]. 

Some other classifications of uncertainty include: 

National Research Council [NRC, 1994] classification 

1) Parameter uncertainty 

i) Random and systematic measurement errors resulting from the imprecision and 

defects in the measurement equipment;   

ii) Use of generic or surrogate data instead of analyzing the desired parameter 

directly; 

iii) Random sampling error arising from limited sampling; 

iv) Non-representativeness, a product of using wrong processes or data set for 

deriving the parameter of interest 

2)  Modeling uncertainty - which can account for uncertainty as high as a factor of 1000, 

results from the inappropriate choice of models.  

i) Inaccurate determination of the relationship between variables; 

ii) Assumptions and simplifications of reality; 

iii) Exclusion of one or more relevant variables; 

iv) Use of general variables to represent all the sites; 

v) Misrepresentation of the granularity of the model (due to incomplete 

understanding of the sub-components of the system). 
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Table 2-1: Classification of sources of uncertainty in risk assessment [Bogen, 1990]  

Hazard Identification 
• Unidentified hazards 
• Definition of incidence of an outcome in a given study 
• Different study results 
• Different study qualities 
 Conduct  
 Definition of control population  
 Physical chemical similarity of chemical studied to that of concern 
• Different study types 
 Prospective, case-control, bioassay, in vivo screen, in vitro screen, Test species,  strain, sex, 
 System, Exposure route, duration 
• Extrapolation of available evidence to target human population 
Dose-response assessment 
• Extrapolation of tested doses to human doses 
• Definition of ‘positive responses’ in a given study 
 independent vs. joint event 
 continuous vs. dichotomous input response data 
• Parameter estimation 
• Different dose-response sets 
 Results 
 Qualities  
 Types 
• Model selection for low-dose risk extrapolation 
 Low-dose functional behavior of dose-response relationship  (threshold, sublinear, linear, 
 supralinear, flexible) 
 Role of time (dose frequency, rate, duration, age at exposure, fraction of life time exposed) 
 Pharmacokinetic model of effective dose as a function of applied dose 
 Impact of competing risks 
Exposure assessment 
• Contamination-scenario characterization (production, distribution, domestic and industrial storage and 

use, disposal, environmental transport, transformation and decay, geographic bounds, temporal 
bounds) 

 Parameter estimation error  
 Field measurement error 
• Exposure-scenario characterization 
 Exposure-route identification  
 Exposure dynamics model 
• Target-population identification 
 Potentially exposed populations  
 Population stability over time 
 Integrated exposure profile 
Risk characterization 
• Component uncertainties 
 Hazard identification 
 Dose-response uncertainty  
  Exposure assessment 
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Rowe’s classification [1994]: 

1) Temporal - uncertainty in future states and uncertainties in past states; 

2) Structural - uncertainty due to complexity; 

3) Metrical - uncertainty in measurement; 

4) Translational - uncertainty in explaining uncertain results 

 In any parameter, the different types of the uncertainty may co-exist or one or 

more may dominate.  Rowe further adds that all the above four classes of uncertainty are 

subject to variability, which arises due to the underlying variants and inconsistencies 

inherent in the system, and variation within the individual components of a system.   

 Finally, bias, which is a result of the systematic errors in measurements and 

subjective judgments, is a common cause of errors in models that rely on expert opinions. 

Subjective judgments contribute to bias due to their reliance on judgments of 

representativeness, availability, adjustment and anchoring heuristics [Tversky and 

Kahnemann, 1974], Representativeness is a heuristic used when a subject is asked to 

judge the probability that a specific event belongs to a certain class or process; 

availability is often employed when the expert is asked to determine the frequency of a 

class or the plausibility of a certain development; and, adjustment is often employed in 

numerical predictions when a relevant value is available to the subject. 

 All the sources of uncertainty identified above are shown in Table 2-2.  As seen in 

the table, uncertainty is not limited to randomness and thus there is a need to adopt other 

formalisms.  A formal introduction to these other formalisms along with probability 

theory is given in the following sections. 
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Table 2-2: Sources of uncertainty and the corresponding type of uncertainty 
associated with the source 

Cause Type 
Morgan and Henrion's Classification  

Statistical variation  Mostly Random and Ambiguous 
Subjective judgment  Random, Ambiguous, and Vague  
Linguistic imprecision  Mostly Vague  
Variability  Vague and Ambiguous  
Inherent randomness of the system  Random 
Approximation, due to simplification 
of the model  

Modeling Error 

Disagreement amongst the experts  Ambiguous 
  

NRC Classification  
Parameter uncertainty  Random, vague and Ambiguous 
Modeling uncertainty  Modeling Error 

  
Rowe's Classification  

Temporal  Mostly Random 
Structural  Vague and Ambiguous 
Metrical  Random, Vague and Ambiguous, 

Also Bias 
Translational  Vague 

 

2.2 Methods of Uncertainty Analysis  

Uncertainty has always been a dominant part of modeling, and its abstract 

character has resulted in controversial and conflicting views on the choice of the most 

appropriate model for representing it.  There are at least two main branches of methods, 

probabilistic and non-probabilistic, distinguished axiomatically, and these are subdivided 

into five theories, distinguished by their context for modeling uncertainty; 1) Frequentist 

probability theory; 2) Bayesian probability theory [Savage, 1961]; 3) Evidence theory 

[Shafer, 1976]; 4) Possibility theory [Zadeh, 1972; Dubois and Prade, 1988]; and 5) 

Fuzzy set theory [Zadeh, 1965].   Axiomatically, probabilistic methods differ from non-
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probabilistic methods in one axiom, in that, probabilistic models require strict additivity, 

while non-probabilistic models do not require an adherence to this axiom.  Conceptually, 

probability theory is used to characterize chance and randomness, and the quantified 

belief measures are supposed to precisely represent the occurrence of the states of the 

world.  In contrast to the assumption of chance and completeness of data by probability 

theory, evidence theory is based on the assertion that “since uncertainty arises from our 

incomplete knowledge of the world, the belief measures should reflect the analysts’ belief 

of occurrence of the state of the world such that any ignorance indicating a lack of 

knowledge should also be represented in the uncertainty analysis.”  In contrast to these 

two theories, fuzzy set theory characterizes uncertainty that arises due to the vagueness in 

the definition of a set itself (such as the definition of the set - ‘high risk’).   

Among the various probabilistic theories, Frequentist probability theory has been 

the most common method, followed by Bayesian theory applied mostly in the field of 

management where subjective judgments are more easily accepted.  Non-probabilistic 

theories, such as, evidence theory, possibility theory and fuzzy set theory have also been 

applied in various fields with a great deal of success; however, the non-probabilistic 

nature and unfamiliarity of these theories has been a source of hesitation by many 

individuals in accepting them in models.  Though the proponents of the non-probabilistic 

theories claim that uncertainty is of many types (randomness, vagueness and ambiguity), 

and hence is best modeled by formalisms that are more flexible in absorbing all the types, 

the probabilistic community has expressed it’s caution in using them as an effective way 

of representing uncertainties [Cheeseman, 1986; Wu et al., 1990; Laviolette and Seaman 

1994; Laviolette et al., 1995].  As more sources of uncertainty are entertained, however, 
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it will become imperative to combine the probabilistic and non-probabilistic models 

[Klir, 1994; Zadeh, 1995].  

 

2.2.1 Probability Theories - Frequentist and Bayesian 

 From the 17th to the early 19th centuries, uncertainty was usually associated with 

randomness of systems and thus was defined solely on a probability space.  A probability 

space, defined on a domain Ω  and the σ -algebra ℑ  on Ω , is given by the probability 

triple ( )ΡℑΩ ,, , where P is a probability measure defined on ℑ .  The σ -algebra ℑ , is 

defined as a collection of subsets of Ω , which satisfy the following properties: 

1.  ℑ∈Ω          (2-1) 

2.  If a subset ℑ∈A , then, { } ℑ∈∉= AAc ωω :     (2-2) 

3.  If ,....2,1 ; =ℑ∈ iAi , then, ℑ∈∪ iA       (2-3) 

Now, for the element A  of ℑ , where elements A  are considered as events, probability in 

the classic sense is required to satisfy the following Kolmogorov’s axioms: 

Axiom 1 (Non-negativity): 1)(0 ≤≤ AP      (2-4) 

Axiom 2 (Normalization): 1)( =ΩP      (2-5) 

       Axiom 3 (Finite Additivity): If niAi ,...,2,1, =ℑ∈  are disjoint, i.e.,  

      ∅=∩ ji AA , then, for all ji ≠  
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Within the period of development of probability theory, two schools of thought, 

Bayesian and Frequentist, originated from how probability was viewed. The major 

difference being, for one (Bayesians), probability is the degree of confirmation about the 

occurrence of an event while to the other (Frequentists), probability is the frequency of 

occurrence of an event in the long run.  This subtle difference has a significant impact on 

how uncertainty is modeled and how the probability estimates are enumerated.  In the 

simplest case, a typical Frequentist analysis consists of n observations of a certain 

random variable, X, and the parameters of X are determined from the observations using 

methods such as maximum likelihood estimation or method of moments. The entire 

process of enumerating the parameters is strictly dependent on direct observational data 

and thus probabilities are considered to be derived objectively.  In contrast to this 

analysis, Bayesians accept subjective judgments as a natural substitute for the lack of 

direct observational data and believe that the probabilities are degrees of belief 

deliberately constructed and adopted on the basis of all the available evidence, both 

objective and subjective.  

The three basic characteristics of the Bayesian theory are [Pearl, 1987]: 

1. The reliance on a complete probabilistic model of the domain; 

2. Willingness to accept subjective judgments as an expedient substitute for 

empirical data; and 

3. The use of Bayes' conditionalization as the primary mechanism for updating 

beliefs in light of new information. 
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Mathematically, the Bayesian method is based on Bayes' theorem of conditionalization: 

)(

)()(
)(

eP

HPHeP
eHP ii

i = ,       (2-7) 

stating that the belief accorded to a particular hypothesis iH  upon obtaining evidence e 

can be computed by conditioning one's prior belief )( iHP  and the likelihood that e will 

materialize assuming iH  is true.  More formally, )( iHP , also known as the prior, is the 

probability defined over the set of all hypothesis ℑ∈iH , ni ,....,2,1= , and )(eP is the total 

probability of evidence given that each hypothesis iH  is true. In other words, if the 

sample space is partitioned such that each iH  forms a partition and if e  is the evidence 

manifested, then, 

( ) )()(
1

i

n

i
i HPHePeP �

=

=         (2-8) 

 )|( iHeP  is the likelihood that the evidence will be observed for when each iH is true. 

The degrees of belief thus accorded are required to satisfy the following two rules: the 

axiom of additivity, for any H , 

P H e P H e( ) ( )+ = 1,        (2-9) 

and the product rule, which states that for any two events H1 and H2, 

P H H e P H H e P H e( , ) ( , ) ( )1 2 2 1 1=       (2-10) 

It is the dependence of priors on expert judgments and the conditional probabilities on the 

right hand side of Equation 2-7 that leads one to identify the subscribers of Bayesian 
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theory as subjectivists. Many other formalisms of the Bayes' theorem [Shafer and 

Tversky, 1985] and a plethora of articles discussing the subjective nature of Bayesian 

theory are available. An elaboration of the Bayes’ theorem from an environmental 

perspective is presented in the papers by Hill [1996] and Smith [1996].  

 Due to the familiarity and objectivism associated with Frequentist analysis, most 

of the analyses in human health risk assessment use this method. The Frequentist method 

is used in the derivation of dose-response relationships for carcinogens, reference doses 

for non-carcinogens, and the determination of concentration profiles at various hazardous 

waste sites [EPA, 1989].  Dose-response analysis is usually conducted using either 

statistical or mechanistic models (Table 2-3).  The statistical models are based on the 

premise that individuals have a certain tolerance and, hence, they model the tolerance 

each individual exhibits to a chemical; the tolerance level representing the point above 

which an individual will develop an adverse effect beyond a certain predefined 

background level.  Probit, Logit and Weibull are common statistical models.   The Probit 

model is based on the assumption that the log tolerances are normally distributed with 

mean µ  and standard deviation σ , while Logit is a Probit with log of the doses.   

Mechanistic models assume that a positive response is the result of a random occurrence 

of one or more biological events.  One-hit model (from radiation) is based on the premise 

that a random exposure to one molecule of an agent is sufficient to trigger the biological 

event, conversely, a multi-hit model assumes that at least k hits have to occur before the 

chemical can induce an irreversible damage at the target site.  The Armitage and Doll 

model assumes that more than one biological event has to take place before an 

irreversible damage can be manifested in a tissue [Armitage and Doll, 1954].   This 
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model can accommodate a quadratic term in the equation thereby allowing the modeling 

of curvature in a dose-response curve. Moolgavkar and Knudson (MKR) [1981] extend 

this model to include the initiation and promotion stages of the carcinogenesis process.  

Table 2-3: Common probability response functions used in risk assessments 

  
Model Function for Probability of a response 
 
Probit  
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Multi-stage { }])(....)2()1()0([exp1 2 kdkqdqdqq ++++−−  
k is the number of biological stages required in the carcinogenic 
process 

MKR ( )( )[ ]� −−=
t

dsstsXtl
0 2221 exp()()( βαµµ  

l(t) – incidence of tumors 
1µ -rate of first mutation 
2µ -rate of second mutation (mutation of transformed cells 

X(s) – Number of normal cells in the target organ at time s 
2α -birth rate of new cells 
2β -death rate of cells 

 
 

All the dose-response models (such as probit, weibull, linear multistage, etc.), reflect the 

use of Frequentist methods in that the response probabilities are derived from functions 

that are fit to strict observational data in the form of single scalar values (singletons), 
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however, the claim of strict objectivity by the Frequentists is questionable as the inputs to 

the choice of the experiment and the selection of available distributions to fit the data are 

determined subjectively from an expert [Savage, 1976; Evans et al., 1994].   

As opposed to the Frequentist models, Bayesian models have found limited 

application. Although the application of Bayesian methods in the fields of artificial 

intelligence and probabilistic risk assessment of nuclear power plants has been studied 

extensively, research regarding their use in health risk assessment has started gaining 

momentum in the past two decades.  Some attempts have been made in the past to 

implement Bayesian approaches in dose-response assessments - the need to combine data 

from various experiments has motivated DuMouchel and Harris [1983] to develop a 

Bayesian statistical model for interspecies extrapolation of dose-response functions and, a 

Bayesian approach has also been used by EPA’s (Environmental Protection Agency) 

Office of Air Quality to determine non-cancer health effects of air pollutants [Whitfield 

and Wallsten, 1989].  Another application has been the use of a Bayesian Monte Carlo 

method for updating uncertainty in integrated environmental health risk assessment 

[Brand and Small, 1995].  And more recently, Hasselblad and Jarabek [1996] have 

comprehensively demonstrated through a number of case studies, the effectiveness of the 

Bayesian approach in modeling the dose-response behavior of toxic chemicals.  With the 

increasing recognition for the use of expert judgments to fill in data gaps, there has been 

an increasing awareness in the human health risk assessment community of the use of 

Bayesian methods. 

Though Bayesian and Frequentist theories differ in how they derive probabilities 

they both must satisfy Kolmogorov’s axioms (Equations 2-4 to 2-6).  The third axiom, 
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also called the law of additivity, states that the sum of the probability of occurrence and 

that of non-occurrence should be unity.  In other words, information obtained to 

determine the occurrence of a given event also asserts the probability of its non-

occurrence.  This implies two things: 1) the events have to be crisp (the boundaries 

between events are crisp and unambiguous); and 2) there is no ignorance (ignorance 

being, if we have knowledge of the occurrence of an event, we do not necessarily know 

anything about it’s non-occurrence, i.e., we are ignorant about it’s non-occurrence).  This, 

however, is not always satisfied when there is a lack of complete evidence or sometimes 

we don’t know how the events are defined.  For example, in a dose-response relationship, 

there is seldom information to completely characterize the effect of a chemical at a 

certain dose. To precisely state that the response to a certain dose can occur 20 times out 

of 100 and stating that the probability in this case is 0.2 is assuming more information, 

because in probability one automatically assumes that response of non-occurrence at this 

dose is, q=1-p=0.8.  This is further magnified when the dose-response curve is 

extrapolated to extremely lower doses because the upper bound of the initial dose-

response slope is what is extrapolated to the lower doses.  In addition, the events for 

which probability is sought are themselves not crisply defined. This could be because of 

the lack of clear definition of the end points.  In the case of fatalities, the response is 

easier to define.  When the response being measured is the degradation of a certain 

human function, however, it is difficult to precisely pinpoint when the “response” (or 

degradation) has occurred.  The inability of probability theory to model non-crisp event 

boundaries and ignorance has led to development of the non-probabilistic theories which 

will be discussed in the next few sections. 
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2.2.2 Non-Probabilistic Theories in Risk Assessment  

Among the non-probabilistic theories, evidence theory and fuzzy set theory are 

the predominant ones that have found applications in risk analysis [Krause and Fox, 

1995; Lein, 1992; Bardossy et al., 1993].     

 

2.2.2.1 Evidence theory 

 Evidence theory (also known as Dempster-Shafer Theory), originally conceived 

by Dempster [1968] to determine the lower and upper probabilities and later extended by 

Shafer [1976] to include the epistemic degrees of belief, consists of assigning 

probabilities on the basis of the belief in evidence obtained to support a proposition.  

Therefore, belief is assigned to individual pieces of evidence, and is not considered to 

yield total probabilities directly.  In this theory the elements of a finite universe of 

discourse and its subsets are identified and then beliefs are assigned to each one of these 

subsets.  The universe of all the subsets is usually referred to as the frame of discernment 

and the subsets for which the assigned belief is non-zero are called the focal elements.  

Beliefs are assigned not only to the subsets, but also to all the individual elements of the 

universe.  For any subset Ω∈A , if we have a function, ]1,0[)(: →Ω℘m , which is called a 

basic probability assignment (bpa), where 0)( =∅m  and 1)( =�
ℑ∈iA

iAm , then the basic 

probability assignment )(Am  represents the belief one commits exactly to A , and not the 

total belief committed to A , i.e., not to any other subsets of the universe. A set F , of all 
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elements for which 0)( >Am  is called the set of focal elements or the focal set, i.e., 

{ }0)(: >Ω⊆= AmAF , and )(Ω⊆ PF .  The total belief committed to A  is determined 

by the following equation, 

�
⊆

=
AA

i
i

AmABel )()(         (2-11) 

In contrast to the rule of additivity as given by Equation 2-6, the axiom of belief 

functions states that for every positive integer n and every collection niAi ,....,2,1, =  of 

subsets of Ω , 

)....()1(......)()()( 1
1

1
N

n

ji
ji

i
i

N

i
i AABelAABelABelABel ∩∩−++∩−≥ +

<=
���   

(2-12) 

Equation 2-12 states that the belief measures of the union of N subsets does not have to 

be equal to the sum of individual subsets; the difference being indicative of the presence 

of ignorance in the assignment of beliefs to each subset.  This concept is more evident 

when one considers only two subsets, A and A . Since Bel A A( )∪ = 1.0 , according to 

Equation 2-12,  

Bel A Bel A( ) ( )+ ≤ 1             (2-13) 

The difference between 1 and ( )()( ABelABel + ) represents the ignorance of an analyst 

to precisely assign beliefs to the negation of A and thus allows him to model uncertainties 

more realistically.  Now, if Bel A( ) represents the extent to which one believes in the 

negation of A, then the dual of a belief measure, called the plausibility measure, Pl(A), is 
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given as, 

�=−=
∅≠∩ A

i
A

iAmABelAPl )()(1)(       (2-14) 

Similar to the belief functions, plausibility measures satisfy the following condition, 

Pl A Pl A( ) ( )+ ≥ 1         (2-15) 

Above equations represent the fundamental difference between evidence theory and 

Bayesian theories.  In evidence theory, for every collection of sets, there are two 

measures to quantify the uncertainties. By allowing a quantitative determination of two 

measures for a single event (belief and plausibility) evidence theory permits one to set 

bounds for the occurrence of an event.  The belief and plausibility measures for an event 

can be viewed as the lower and upper bounds, respectively, of the probability measure of 

that event.  When the evidence is specific to singletons, belief and plausibility measures 

reduce to probability measures. 

 Similar to Bayesian theory, evidence theory can also combine knowledge from 

various sources.  Dempster’s rule of combination is used to combine the evidences from 

two sources, m1 and m2 specified on Ω , and Ω⊆CB, , as, 

K

CmBm
Am ACB

−

⋅
=
�

=∩

1

)()(
)(

21

2,1        (2-16) 

for A ≠ ∅ , where 

K m B m C
B C

= ⋅
∩ =∅
� 1 2( ) ( )        (2-17) 
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The term 1-K is a normalization factor used to discard any information that belongs to the 

null set in the intersection set of m1 and m2.  Unlike Bayes’ rule, Dempster’s rule of 

combination does not condition priors over the new information, rather prior and new 

information are combined equally.  A more in-depth analysis of Equation 2-16 can be 

found in Shafer’s treatise on Theory of Evidence [Shafer, 1976]. 

 Over the years, evidence theory has been widely used in the design of medical 

diagnostic systems, however, its use in human health risk assessments has been very 

limited.  Evidence theory offers an excellent framework for the inclusion of qualitative 

information into a model, or when information flow is such that judgments are made 

from a superset to the subsets (from general to specific).  Krause et al. [1995] explore the 

idea of using belief and plausibility measures in deriving plausible conclusions about the 

risks from carcinogenic chemicals.  They consider the inputs to the expert system as 

being supplied by the expert as linguistic qualitative arguments and are only defined by 

weak quantitative measures.  

 

2.2.2.2 Fuzzy Set Theory 

 Fuzzy sets, introduced by Zadeh in 1965 [Zadeh, 1965], have been used 

extensively in control, optimization and decision making systems.  Fuzzy logic, in 

comparison to classical binary logic, “exploits the tolerance for imprecision” in systems 

and allows for partial truths to be assigned to various states.  Instead of the truth values 

being in either the 0 (false) or the 1 (true) state, a partial truth within the interval [0,1] is 

used.  In conventional set theoretic formulations, a given element x, either belongs to the 
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set A or to the complement A . Therefore, for a given set A, 

	


�

∉
∈

=
Ax

Ax
xTruth

 iff 0
 iff 1

)(        (2-18) 

In contrast to this hard classification, fuzzy set theory introduces a softer concept in terms 

of a membership function, which determines the degree to which the element x belongs to 

the set A.  Hence, instead of assigning 0 or 1, a value in the range [0,1] can be assigned.  

The supporters of fuzzy set theory use this concept to support their argument that fuzzy 

set theory can model linguistic imprecision more accurately than conventional 

probabilistic models.  Linguistic imprecision is usually reflected in vague or ambiguous 

statements such as "likely", "seldom", "more or less", and so on.  Fuzzy logicians claim 

that a range of values is a better way of representing such variables.  A fuzzy set, 
~
A  is 

given by a membership function, µ ~ ( )
A

x , on a real line [0,1], and represents the degree to 

which an element, x belongs to the fuzzy set 
~
A . 

A fuzzy set which can be discrete or continuous, can be represented as  

~ ( ) ( )
.......

( )~ ~ ~
A

x

x

x

x

x

x
A A A i

ii

= + +
�
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µ µ µ1

1

2

2
    (2-19) 

The horizontal bar in the above equation is not a quotient but a delimiter, and the “+” sign 

is the union and the �  indicates the collective union of all the membership terms. 

 Membership functions and probability distribution functions should not be 

confused with each other, as the former deals with partial degree in assignment of an 

element to a particular set, while the latter deals with relative likelihood.  The 
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implications of using membership functions to represent a variable are discussed more in 

the next section.   

Once a membership function for a variable is defined, two principle methods exist 

to perform fuzzy arithmetic.  Zadeh has proposed an extension principle to functionally 

map the products of elements from two discrete universes U1 and U2 to another discrete 

universe as, 

[ ]
�


�

	


�

∈∈= � 2211
21

2211 ,
),(

)(),(min
)

~
( UuUu

uuf
uu

Af
µµ     (2-20) 

and in the case where more than one of the combinations of the input variables, U1 and 

U2, are mapped to the same variable in the output space, V, the maximum membership 

grades of the combinations of the discrete mappings to the same output variable are 

taken: 

{ }[ ])(),(minmax)( 2211),(
~

21

uuv
uufvA

µµµ
=

=      (2-21) 

While rigorous, the extension principle can be difficult to implement for many functions.  

An alternative method is based on interval analysis, wherein the membership function is 

divided into a number of λ -cut levels and standard interval analysis operations can be 

carried out on the λ -cuts. A λ -cut set, λA , where 10 ≤≤ λ , is a crisp set such that, 

{ }λµλ ≥= )(~ xxA
A

.  Figure 2-1 shows an example of the membership function and the 

λ -cut sets at a membership of 0.3 and 0.6.  The sets represented by the intervals [x1(0.3), 

x2(0.3) ] and {x1(0.6), x2(0.6)] define the λ -cut sets A0.3 and A0.6.  
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0.3 

0.6 

λ -cuts 

X x 1(0.3) x 2(0.3) 

Membership Function for a Fuzzy Set 
� 

x 1(0.6) x 2(0.6) 

  

Figure 2-1 Membership function and λλλλ-cut illustration. 

A number of other specific operations depending on the field of application (such as, 

rule-based systems, fuzzy decision making, pattern recognition, etc.,) have been 

developed (see Ross, 1995).   

 Fuzzy set theory has had limited application in human health risk assessments.  

Bardossy et al. [1993] use fuzzy non-linear regression analysis in the determination of 

dose-response relationships of N-nitroso compounds.  In this model, the fuzzy parameters 

for the dose response relationship are derived using fuzzy non-linear regression.  Ferson 

and Kuhn [1992] explore the use of fuzzy arithmetic in propagating uncertainty in 

ecological risk assessment.  Due to the acknowledgment and higher acceptance of 

vagueness in decision-making, there have been more applications of fuzzy set theory in 

the risk management of hazardous waste sites than in risk assessments [Anandalingam 

and Westfall, 1988; Lee et al., 1994; Ross and Donald, 1995; Donald and Ross, 1996].   
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2.2.3 Discussion of the Various Methods  

As can be seen from the previous sections, each method has a unique advantage 

over the others and also, more uncertainty is represented as the method accommodates a 

range of numbers as opposed to point estimates.  In the Frequentist method, the assigned 

beliefs are considered to be the property of the world and not the property of the observer 

who is assigning the beliefs.  The method depends more on empirical data as determined 

by a statistical experiment, therefore the derived probabilities are not affected by 

subjective bias.  The purely objective nature of this theory has, however, been questioned 

on the basis that the choice of statistical experiments, the inclusion or exclusion of data, 

the selection of distributions, and the choice of method for estimating parameters, all 

include an input of the expert's understanding of the system.  But mostly, this method is 

widely accepted as being more objective than subjective in nature.  Bayesian theory, on 

the contrary, offers a framework to include both Frequentist concepts and expert 

judgment to estimate the priors, and also enables an updating of these priors depending 

on the current state of knowledge of the system.  For example, a system may consist of 

various components whose failure might lead to a change in the probability estimates of 

the other components.  Consider the case where a hazardous chemical spill has occurred.  

Such a situation which might arise due to a number of reasons can affect the prior 

probabilities assigned to the probability of exposure ( )( spillExposureP ).  Bayesian 

theory thus provides the analyst a framework to update the probabilities with acquisition 

of more data.  Bayesians’ claim that probability is the observer's state of knowledge of a 

system at a given point, and it allows an expert to use his judgment in providing 
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probabilities.  In cases where complete data to define a distribution is lacking it would be 

prudent to accept such an expert's judgments to fill in the data gaps and derive the 

estimates of probability.  Consequently, with the availability of additional data the 

inferences about an estimate can be changed and updated according to Bayes' theorem.    

 Bayesian theory, however, with an adherence to the axiom of additivity, assumes 

that the probabilities of an event occurring are known with certainty, i.e., if we determine 

that an event A can occur with a probability, p, then the probability of the event not 

occurring is 1-p, even though there may be no evidence to support this or, worse, there 

may be evidence to refute this.  In other words, the evidence (objective or subjective) is 

considered to be accurate in determining the probability of occurrence of an event.   

The Dempster-Shafer theory disagrees with this Bayesian concept in that the 

belief of an event A occurring, p, does not mean that the belief of non-occurrence is 1-p.  

Shafer [1990] points out that “instead of thinking of a chance model in terms of the facts, 

we should think in terms of a chance model for the reliability and the meaning of our 

evidence.”  Therefore, we do not have to be committed completely to any one estimate in 

the absence of relevant data.  Instead belief values can be assigned to the subsets of the 

universal set.  For example, let Ω  = {cancer by ingestion (CIG), cancer by inhalation 

(CIN), cancer by dermal absorption (CDA), no cancer}, represent the frame of 

discernment.  If I believe from available information that an individual exposed to a 

contaminant will develop cancer by ingestion is 0.002, this does not mean that the 

individual not contracting cancer by this exposure route is 0.998.  Table 2-4 shows the 

basic probability assignments m(A) for the rest of the subsets of this example problem 

domain.  Equations given in section 2.2.2.1 are used for the determination of the belief 
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and plausibility measures.  In the Dempster-Shafer theory, an overlap of the information 

is allowed and it is not necessary to commit to either one subset.  Such representation, 

hence, includes the ignorance of knowledge and denotes a range of possible values.  In 

practice, representations such as these are not uncommon occurrences.  An expert or the 

observer assigning the belief values is usually not sure (in doubt) about the commitment 

to any one proposition, rather, the expert spreads his belief to more than one proposition.  

In evidence theory, thus, two sets of measures, belief and plausibility, are calculated and 

then assigned to each subset.  

 In fuzzy set theory, instead of assigning crisp probabilities to the occurrence of 

cancer for a certain route, a range of numbers defined by a function can be used.  The 

rationale for representing uncertainty in such fashion can be justified on the basis that 

experts are more comfortable in expressing themselves linguistically over a range of 

numbers.  Usually these functions have been limited to trapezoidal and triangular shapes.  

For example, a triangular membership function given over a certain range (Figure 2-2) 

can be used to represent an expert’s estimate of the probability of fatality from cancer due 

to inhalation of some toxic gas to be ‘around 0.2’.  Similar membership functions can be 

defined for other variables and fuzzy arithmetic or interval analysis can be used to 

propagate the uncertainties over the probability space. 
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Table 2-4: Example Belief and Plausibility measures 

Focal Elements Ai m(Ai) Bel(Ai) Pl(Ai) 

Cancer by Ingestion (CIG) 0.006 0.006 0.197 

Cancer by Inhalation (CIN) 
 

0.003 0.003 0.193 

Cancer by Dermal absorption (CDA) 0.000 0.000 0.183 

CIG ∪ CIN 0.009 0.018 0.219 

CIG ∪ CDA 0.002 0.008 0.198 

CIN ∪ CDA 0.001 0.004 0.195 

CIG ∪ CIN ∪ CDA 0.11 0.130 0.200 

No Cancer 0.800 0.800 0.870 

CIG ∪ No Cancer 0.000 0.806 0.996 

CIN ∪ No Cancer 0.000 0.803 0.992 

CDA ∪ No Cancer 0.000 0.800 0.982 

CIG ∪ CIN ∪ No Cancer 0.000 0.818 1.000 

CIG ∪ CDA ∪ No Cancer 0.000 0.808 0.997 

CIN ∪ CDA ∪ No Cancer 0.000 0.804 0.994 

CIG ∪ CIN ∪ CDA ∪ No Cancer 0.069 1.000 1.000 

  

 

0.1 0.2 0.3 

� 

1.0 

prob 

" Fuzzy Set around 0.2" 

 

Figure 2-2: A triangular membership function representing the variable ‘around 
0.2’. 
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  Another theory, which has not had much application in risk assessments, but of 

equal importance in modeling uncertainty, is possibility theory [Dubois and Prade, 1988].  

Possibility measures can be interpreted in terms of two concepts: i) Zadeh's concept of a 

fuzzy set, where the possibility distribution function, )()( xx Aµπ = ; and ii) evidence 

theory, when the belief measures are consonant, i.e., the focal elements are nested such 

that A A An1 2⊂ ⊂ ⊂.. .. . .  Possibility distributions have also been identified with 

distributions defined on probabilities [Tanaka et al., 1983; Misra and Weber, 1989, 

1992].  Possibility distributions defined in such terms are merely fuzzy sets on the crisp 

probability values.  The historical interpretations based on fuzzy sets, however, should be 

differentiated from the possibility distributions acquired from assuming consonance of 

intervals (nested intervals), in which case, the distribution is a set-based contour function 

of plausibilities (from Evidence theory).  Under information constraints, imprecision in 

the probabilities are unavoidable, hence, this method (Dubois and Prade, 1988) of 

representation for possibility theory seems more logical and realistic [Klir, 1994]. 

Representing uncertainty using possibility theory, of the Dubois and Prade type, is the 

core of this dissertation and is presented further in Chapter 3. 

 

2.3 Inclusion and Propagation  of Uncertainty  

Uncertainty measures derived by using any of the above concepts can be 

characterized either as a point estimate, as an interval, or as a distribution. Propagation 

techniques should be appropriate to the form of characterization.  In point estimates, the 

associated uncertainty is usually summarized in a single value using either an uncertainty 
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factor (non-cancer risk assessment), or 95 percent upper bounds of values derived from 

linear extrapolations (cancer risk assessment) or by considering the upper percentile 

values (exposure assessment).  On the other hand, in the case of intervals or distributions, 

ranges of numbers represented either as both the lower and upper bounds, or as a 

functional distribution over the variable space are used to characterize uncertainty.   

While simple mathematical operations can be used to propagate uncertainty represented 

as single numbers, propagation of intervals and distributions through a risk assessment 

model warrant special operations.  In probabilistic methods, there are at least four 

methods used for propagating uncertainty represented by distributions [Cox and Baybutt, 

1981]: i) analytic techniques; ii) differential sensitivity techniques; iii) Monte Carlo 

simulation; and iv) response surface approaches.  Of the available methods, Monte Carlo 

simulations are the most widely used in the field of risk assessment [Thompson et al., 

1992, Smith, 1994, Hoffmann and Hammonds, 1994].  The complexity of the analytic 

techniques and differential sensitivity techniques increases with the number of variables 

and hence these methods have not been used much in the propagation of uncertainty, 

especially in human health risk assessments.  An in-depth explanation of the use of 

analytic methods to propagate large errors is presented in a paper by Seiler [1987] (see 

also Morgan and Henrion, 1990 for a description and comparison of various methods).  

Interval methods are used to propagate uncertainty represented by intervals, those that 

have been derived from either probabilistic concepts or non-probabilistic concepts.  

Extension principle is another common method used for propagating uncertainty 

represented as fuzzy membership functions [Ross, 1995].  Propagation by the extension 

principle is dependent on the discretization of the membership function and can therefore 
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yield extraneous outputs in coarsely discretized functions.  This section focuses only on 

the most common methods of characterization and propagation of uncertainty in human 

health risk assessment.   

 

2.3.1 Science-Based Uncertainty Factors 

 Conventionally, uncertainties arising from insufficient knowledge of animal-to-

human extrapolations were accounted for by using factors that had a more numerical than 

mechanistic basis. Introduced by the Food and Drug Administration (FDA) to account for 

interspecies variability and the presence of sensitive sub-populations [Lehmann and 

Fitzugh, 1954], safety factors, also known as uncertainty factors, are the prescribed 

modes of handling uncertainty in non-cancer risk assessments.  They are defined for 

high-to-low dose, inter- and intra-species and Low Observed Adverse Effect Levels 

(LOAEL)-to-No Observed Adverse Effect Levels (NOAEL) extrapolations.   

Table 2-5: Uncertainty Factors used at various extrapolation levels  

Extrapolations Rationale Default Uncertainty 
Factor 

Variation within the general 
populations 

Intended to be protective of 
sensitive subpopulations such as 
elderly and children 

10 

 
From animals to humans 

 
Accounts for interspecies 
variability 

 
10 

 
Sub-chronic effects to chronic 
effects 

 
Includes the uncertainty due long 
term toxic effects of the 
chemical 

 
10 

 
LOAEL1s to NOAEL2s 

  
Accounts for uncertainty in  how 
low a NOAEL is from LOAEL 

 
10 

1Low-Observed Adverse Effect Levels 
2No-Observed Adverse Effect Levels  
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Application of an uncertainty factor (UF) is criticized on the basis that the validity 

of a NOAEL itself is questionable, since it is dependent on the number of animals tested, 

as 0-out-of-10 and 0-out-of-1000 have clearly different interpretations.  And also, the 

actual conservatism attached to a reference dose derived using an uncertainty factor is 

arguable as the slope of the dose-response curve is not considered in the selection of the 

UF [Cornfield et al., 1980] (more recently, a benchmark dose (BMD) approach that 

accounts for the slope of the dose-response curve has been developed to enhance the 

validity of deriving the NOAELs [EPA, 1995]).    Table 2-5 shows the default uncertainty 

factors (UFs) as prescribed by the EPA for determining the reference doses (RfD) (EPA, 

1989).   The values from Table 2-5 have been replaced by factors that have been derived 

from the increased understanding of the mechanism of action of various chemicals, inter- 

and intra-species sensitivity, and acquisition of more data has led to the development of 

UFs that were more justifiable on a mechanistic basis.  To counter the criticisms of lack 

of scientific basis for conventional safety factors, science-based uncertainty factors were 

developed.  Dourson et al. [1996] highlight three approaches that have been developed 

for deriving science-based uncertainty factors: 1) Lewis-Lynch-Nikiforov’s (LLN) model 

[1990]; 2) Renwick’s Model [1993]; and 3) Probabilistic approaches [Swartout et al., 

1994].  The LLN model accounts for uncertainty in extrapolations from animal to humans 

by adopting adjustment factors as given in Equation 2-22 (see Table 2-6 for a description 

of terms).  The magnitude of the adjustment factors are determined by the risk assessor 

and they vary according to the form of extrapolation and the strength of data supporting a 

cause-effect relationship. 
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No Effect 
NOAEL  in 

Q Q U C
Level in Human =  

Animal S
I R Q1

×
× × × × × ×2 3

  (2-22) 

 Renwick’s model is mainly applicable to intra- and interspecies extrapolations.  

Uncertainty factors derived from Renwick’s model are based more on mechanistic 

information such as toxicokinetic and toxicodynamic differences between the species.  

Based on a study of toxicokinetic and toxicodynamic variations between and within 

species, Renwick recommends an uncertainty factor of four for toxicokinetic differences 

and a factor of 2.5 for toxicodynamic differences.    

And finally probabilistic approaches are based on the rationale that enough data 

exists to specify a probabilistic distribution over the range of uncertainty factors 

[Swartout et al., 1994].  The most likely distributions for each of the uncertainty factors is 

a log-normal, with the following parameters: 1) an UF of 10 represents the 95th 

percentile; 2) an UF of 3 represents the 50th percentile; 3) the subchronic-to-chronic and 

LOAEL-to-NOAEL UF is bounded by values of 1 and 50; and 4) the interspecies 

extrapolation UF is bounded by values of 0.2 and 50.  Risk estimates derived from the 

use of the default safety factors are usually much higher than the actual values, the extent 

of conservatism increasing substantially with the number of input variables [Dourson and 

Strata, 1983].  In complex risk assessment models, where the number of variables is very 

large, this conservatism can yield risk values that are much larger than the actual 

realizable value.  Additionally, the use of UFs to derive reference doses also suffers from 

the drawbacks of influencing an analyst to subsequently accept the value as the truth, thus 

limiting any search for better values. 
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Table 2-6: Adjustment factors for the LLN Model [Dourson et al., 1996] 

AFa Description Range of 
Values 

Most 
Likely 
Value 

Default 
Value 

S Scaling Factor to account for known quantitative 
differences between species and, the  differences in 
experimental conditions and those likely to be 
encountered by humans 
 

>0 NSb 1 

I Intraspecies variability 
 

1-10 1-3c 10 

R Interspecies extrapolation 
 

>0-10 NS 10 

Q1 Degree of Certainty that the critical effect observed 
in laboratory animals is relevant to humans 
 

0.1-1  1 

Q2 Subchronic to chronic extrapolation 
 

1-10 1-3 10 

Q3 LOAEL to NOAEL extrapolation 
 

NS 2 10 

U Accounts for residual uncertainty in estimates of S, 
I, and R 
 

1-10 NS 10 

C A nonscientific, judgmental safety factor 1-10 ≤ 3 1 
aAdjustment Factor 
bNot stated in the LLN paper 
cBased on high quality data 
 

A second form of uncertainty representation that is being pursued by the EPA is 

to base the derivation of toxicity factors of carcinogenic agents on the 95% confidence 

interval (CI) bounds.  The existing EPA guidelines [EPA, 1989] recommend a slope 

factor approach to estimate the risks from carcinogens; slope factor being defined as the 

upper 95% confidence interval bounds of the slope of the dose-response curve obtained 

from extrapolating from high- to low-doses.  The guidelines also recommend the use of 

the upper 95th percentile values for the parameters (such as inhalation rate, ingestion rate, 

magnitude of contamination detected at the site, etc.)  used in the assessment of the 
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exposure dose. This however has been shown to lead to an overly conservative estimate 

of risk.    

Bogen [1994], Burmaster et al. [1993] and Finkel [1994] illustrate three different 

perspectives on the effect of compounding conservatism arising from using upper 

percentile values in their papers.  Bogen determines the effect of using the upper p-

fractile estimates as the input variates in multiplicative models.  Let Xi represent the input 

variates and R the estimate of the predicted risk.  If Op(X) = log (Xp/X1-p), where 

15.0 ≤≤ p , and p is the upper p-fractile, the factor by which the sum of p-specific orders 

of uncertainty magnitude associated with the n-input variates overestimates the 

corresponding number associated with the input risk is given by Equation 2-23: 

β = =
�O X

O R

p i
i

n

p

( )

( )
1         (2-23) 

If the overconservatism factor, κ  is expressed as, 

κ = −
−

1
1

p
p'             (2-24) 

and p p' ( ( ))= −Φ Φβ 1 , where Φ and Φ −1  are the standard normal cumulative probability 

distribution function and its inverse respectively, and if the inputs have a lognormal 

distribution, with p=0.95, the overconservatism factor κ  is 5.0, 99.7, and 506,000 when 

n is 2, 4, and 10, respectively [Bogen, 1994]. The overconservatism thus increases by 

significant amount with the number of input variates.  Similarly, Burmaster et al. [1993] 

have determined as given by Equation 2-24 that, the multiplication of 95th percentile 
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values of three identical log-normally distributed variables yields the 99.78th percentile 

of the simulated output distribution, i.e.,   

( )[ ]
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,
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      (2-25) 

Using conservative values in deriving the input distributions further increases this 

conservatism.  Two other papers [Reckhow, 1994; Shevenell and Hoffman, 1993] address 

the need of uncertainty analysis in risk assessments and environmental decision-making.  

The effect of compounded conservatism is most realized at the risk management stage 

wherein monetary investment plays an important role.  The investment to remediate a site 

increases in proportion to the risks determined from the risk assessment models and  thus 

it is essential to consider all the relevant information in yielding risk numbers that are 

defensible and valid. 

 

2.3.2 Probability Distributions and Monte Carlo Simulations 

 The popularity of Monte Carlo simulations has been so great that an entire issue 

of a risk assessment journal has been devoted to this subject [HERA, 1996].  This method 

is used to propagate a range of numbers represented by probability distribution functions.  

Probability distribution function (also called cumulative distribution function, CDF) and 

probability density function (PDF) which represent the relative likelihood of various 

values, x, for a random variable X, are functional and graphical characterizations of 

uncertainty stemming from random data.  The probability distribution is characterized by 
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specific parameters, usually, the first and second moments which indicate the central 

tendency (mean) and the variance in the data.  Depending on the characteristics of the 

distribution obtained for a variable, a number of distributions are available to fit the data, 

however, normal and lognormal distributions have been the most popular in exposure 

assessments [Roseberry and Burmaster, 1992; Ruffle et al., 1994].  Some of the most 

common distributions are given in Table 2-7.  The simplicity and very general 

applicability of the Monte Carlo method has encouraged analysts to use it extensively to 

propagate uncertainty represented by probability distributions.   In this method, there is 

no restriction on the form of joint input distributions or on the nature of the relationship 

between the input and the output [Cox and Baybutt, 1981] and, it can be used to simulate 

any process that is influenced by random variables.  The basic version of Monte Carlo 

simulation consists of randomly choosing the values ( )α α1 1( ) ,...., , ,....i
n
i N i = , (with the 

help of a random number generator) from various input distributions and substituting 

them in a function, which is an empirical expression of the risk assessment model, to 

obtain the corresponding outputs Y(i) , i = 1,...N.  The accuracy of the output estimates 

increases with the number of samples.  Conventional sampling procedures however tend 

to unevenly select values that are close to the mean and hence can result in estimates that 

are concentrated more towards the center of the distribution (this is a big problem in 

cases where the distribution has long tails).  To avoid this problem, an improved 

sampling procedure, Latin Hypercube Sampling (LHS) based on the stratification of the 

sample space has been developed by Iman, Davenport and Zeigler [Morgan and Henrion, 

1990].   
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Table 2-7: Some common probability distributions and their means and variances 

Type Functional Representation Mean  
( µ ) 

Variance  
( 2σ ) 

Uniform 
 

PDFa:  1

b a−
≤ ≤;  a x b  

CDFb:  x a
b a

−
−

 

Parameters of distribution: a and b 

 
a b+
2

 

 
( )b a− 2

12
 

Normal 
PDF: 1

2 21 2

2

2( )
exp

( )
;/π σ

µ
σ

− −�

�
�

�

�
� − ∞ ≤ ≤ ∞x

x    

CDF:  
No closed form solution. Determined from 
tables. 
Parameters of distribution: σµ ,  

 
 

µ  

 
 

σ  

Log-Normal 
PDF: 1

2 2
0

1 2

2

2σ π
µ

σx

x
x

( )
exp

(ln )
;

/
− −�

�
�

�

�
� ≤ ≤ ∞    

CDF:   
Computed from normal distribution of 
ln(x). 
Parameters of distribution: σµ ,  

exp( )µ σ+
2

2

 

 

)2exp(
and

 )exp(

;)1(
2

µ

σ

=

=

−

v

w

vww

 

Exponential PDF:  λ λexp( );− ≤ ≤ ∞x x   0  
CDF:  1− −exp( )λx  
Parameters of distribution: λ  

1

λ
 

2

1
λ

 

Triangular 

PDF:  

2

2

( )
( )( )

;

( )
( )( )

;

x a
b a c a

b x
b a b c

−
− −

≤ ≤

−
− −

< ≤

   a x c

   c x b

0                           otherwise

 

 

CDF:  

0                           x < a

(x - a)
(b - a)(c - a)

;        a x c

1 -
(b - x)

(b - a)(b - c)
;    c < x b

1                           b < x

2

2

≤ ≤

≤

 

Parameters of distribution: a, b (endpoints) 
and c is the point corresponding to the 
maximum on the triangle. 
 

a b c+ +
3

 m n

m a b c

and

n ab ac bc

−

= + +

= − −

18
2 2 2

;

 

aProbability density function, for a continuous function, 
dx

CDFd
PDF

)(=  

bCumulative distribution function, [ ]xXP ≤=CDF , determines the probability that the random variable takes on 
values less than x. 
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In this method, the input distributions (cumulative probability distributions) are divided 

into m equiprobable intervals.  A single value is then randomly sampled from each of 

these m intervals and paired with similar samples from other input distributions.  In this 

version of the method, as the samples are more evenly spread, a better representation of 

the mean, variance, and other parameters of the distribution is possible.   

 In recent years, Monte Carlo simulation with LHS sampling has gained much 

popularity among risk assessors to propagate probability distributions that represent the 

uncertainty in exposure concentrations.  A thorough exposition of this method as applied 

to human health risk assessment is given by Thompson et al. [1992].  Smith [1994] 

conducted a health risk assessment of individuals exposed to volatile solvents by drinking 

water ingestion and inhalation using this approach.  Hoffman and Hammonds [1994] 

demonstrate the use of the Monte Carlo approach to propagate combined uncertainty and 

variability (referred to as type A and type B uncertainty).  In propagating such combined 

variables, probability distributions are provided to represent uncertainty and variability. 

The main drawbacks of the Monte Carlo approach are its inability to support 

sensitivity analysis, high computational effort, and the dependence on the accuracy of the 

probability distributions.  These drawbacks can sometimes be overcome by efficient 

sampling techniques and the inclusion of sensitivity analysis techniques into the analysis.  

Burmaster and Anderson [1994] lay out 14 principles of practice that can assist one in 

performing valid Monte Carlo risk assessments.  To enhance the accuracy of input 

distributions, methods of selecting the appropriate distributions for all the variables has 

been studied in depth by Seiler and Alvarez [1996].   Other shortcomings implicit in the 
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use of  Monte Carlo simulations are offered by Ferson [1996]. In addition to conventional 

Monte Carlo simulations, fuzzy arithmetic in the form of interval analysis has been added 

to the sampling scheme for the simulation of risk to fishery population [Ferson, 1993].  In 

this method, samples are taken as fuzzy numbers and then combined using interval 

analysis techniques (introduced in Section 2.3.3).   

 

2.3.3 Interval Methods 

 Interval methods can be used to propagate uncertainty derived using all of the 

uncertainty quantifying concepts, however, the implementation of these methods varies 

from concept to concept.  In interval analysis, conventional mathematical operations of 

sum, product and division are used to propagate intervals bounded by a minimum and a 

maximum value.  Interval methods have been applied recently as a technique in back 

calculating soil cleanup targets [Frey, 1996; Burmaster et al., 1995].  In this method, 

given three intervals, [ ]X x x1 11 12= ,   , [ ]X x x2 21 22= , , [ ]X x x3 31 32= , , wherein the first 

value in the interval represents a min and the other the max of the variable and, if the 

output variable R  is expressed as, 

R
X X

X
= 1 2

3
         (2-26) 

then R is given as,  

[ ]
[ ] 0  ;,

,
,

31

2212

32

2111

3231

22122111 >∀�
�

�
�
�

�
== ijx
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xx

x
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R     (2-27) 
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 Interval analysis methods are also used for propagating uncertainty characterized 

as membership functions derived from fuzzy set theory.  In this application, intervals are 

formed by obtaining λ -cut levels for each input whose inner and outer values are then 

propagated using the following set of rules [Ross, 1995]: 

[ ]
[ ]
[ ]

[ ] [ ]

X X x x x x

X X x x x x

X X x x x x x x x x x x x x x x x x

X X x x
x x

x x

1 2 11 21 12 22

1 2 11 22 12 21

1 2 11 21 11 22 12 21 12 22 11 21 11 22 12 21 12 22

1 2 11 12
22 21

21 22
1 1 0

+ = + +

− = − −

=

÷ = ⋅
�

�
�

�

�
� ∉

,

,

min( , , , ), max( , , , )

, , ,

   

    provided that 

 (2-28) 

The resulting output intervals are subsequently plotted at various λ -cuts to obtain the 

output membership function.  Other variations of interval mathematics based on λ -cuts 

have been developed [Dong, Shaw and Wong, 1985].  

 In addition to the interval analysis used in combination with the Monte Carlo 

simulation [Ferson, 1993] as presented in Section 2.3.2, Ferson and Kuhn [1992] also 

introduce interval analysis in conjunction with fuzzy arithmetic in propagating 

uncertainty in ecological risk assessment.  In a more recent paper, Ferson and Ginzburg 

[1996] argue that interval analysis as opposed to probability theory is a more appropriate 

method for propagating uncertainty resulting from partial ignorance (systematic 

measurement errors or subjective uncertainty). 

 

2.3.4 Linguistic Approach (No relation to fuzzy set theory) 

 Another method of uncertainty characterization as developed by the Department 

of Defense [Department of Defense, 1994], accounts for uncertainty by assigning 
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linguistic terms, such as, high, medium and low to the variables that are used to rank the 

hazardous waste sites.  No formal uncertainty analysis is carried out per se.  This method 

deviates from the conventional approach in allowing a comparison of risks between sites 

rather than the calculation of absolute risks at a specific site.  The risks at sites are 

compared subjectively using a set of linguistic labels determined from a set of linguistic 

terms given by three factors: contaminant hazard factor (CHF); migration pathway factor 

(MPF); and receptor factor (RF).  While the intensity of the MPF and RPF is determined 

purely by subjective judgment, a more objective criteria (a ratio between the maximum 

concentration of a contaminant detected at the site and the standard for the contaminant) 

is used for CHF.  Table 2-8 lists the linguistic terms and the associated subjectively 

defined intensity factors.  

 The determined linguistic variables are then propagated by using a set of pre-

defined matrices to yield the finals risks (Table 2-8).  The resulting risks as demonstrated 

in Table 2-8 are defined by linguistic terms, high (H), medium (M) and Low (L) 

determined according to the corresponding combination of the CHF, MPF and RF. 
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Table 2-8: Assignment of linguistic intensity labels to the site evaluation factors 
[Department of Defense, 1994] 

Contaminant Hazard Factor 
(CHF) 

 

Significant 

 

Sum of ratios [maximum concentration/ standard] 
> 100 

Moderate 

 

Sum of ratios [maximum concentration/ standard] 
= 2 – 100 

Minimal Sum of ratios [maximum concentration/ standard] 
< 2 

Migration Pathway Factor (MPF)  

Evident Analytical data or observable evidence indicates 
that contamination in   the media is moving away 
from the source and towards the point  of exposure 

Potential Possibility for contamination to be present at or 
migrate to a point of  exposure; or information is 
not sufficient to make a determination of Evident 
or Confined 

Confined Information indicates that the potential for 
contaminant migration from  the source is limited 
(due to geological structures or physical  controls) 

Receptor Factor (RF)  

Identified Receptors identified as having access to the 
contaminated media 

Potential There is a potential for receptors to have access to 
the contaminated media 

Limited Little or no potential for receptors to have access to 
the contaminated media 
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2.3.5 A Short Note on Combining Uncertainty Analysis Models with Mechanistic 

Models 

 Mathematical uncertainty analysis is a useful tool that can only be used as an aid 

to the model parameter uncertainties and the relation between the parameters in a 

predefined model. It is however more crucial that uncertainties be reduced as much as 

they can by improving the models themselves. There have been many efforts in the recent 

years that have focused on improving the validity of risk assessment models by better 

understanding the dosimetry and biological mechanisms involved in the toxic effect of a 

hazardous chemical. The models that have seen most growth in the risk assessment 

community are the physiologically based pharmacokinetic models (PBPK) and 

biologically based dose response models (BBDR) [Goddard and Kewski, 1995, Leung 

and Paustenbach, 1995] together known as the pharmocokinetic/pharmacodynamic 

models (PBPK/PD). The primary purpose of PBPK models is to predict the magnitude of 

dose that reaches a specific organ and in turn to predict the dose-response relationship 

more accurately.  Consisting of various compartments that represent an organ or a tissue 

group, they are described by a series of differential mass-balance and biotransformation 

equations to predict the amount of toxic moiety being absorbed, transformed and 

eliminated in each compartment. The differential equations are then solved numerically 

to compute the amount of chemical that is directly related to a specific response in the 

target organ.   

 As opposed to the PBPK models that represent the pharmacokinetic behavior of 

various tissues, BBDR models are pharmacodynamic models that model the effect of a 
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toxicant on the human systems.  To date, the most widely applied BBDR model has been 

the simplified two stage clonal expansion model for carcinogenesis, also known as the 

MVK model [Moolgavkar and Venzon, 1979, Moolgavkar and Knudson, 1981].  The 

main constructs of this model are defining and modeling two stages of initiation and 

promotion, that are crucial in the transformation of a normal cell into a malignant cell.  

The model assumes that a pool of normal cells X(s) are transformed into an intermediate 

cell at the rate of ν(s).  The intermediate cells further divide into two intermediate cells at 

the rate of α(s) and precisely into an intermediate and a malignant cell at the rate of µ(s).  

An approximation of the hazard function h(t) derived from the MVK model for low 

tumor incidence is given by [Moolgavkar and Luebeck, 1990]: 

[ ]{ }dsduuusXsvtth
t t

s� � −≈
0

)()(exp)()()()( βαµ     (2-29) 

 The dissection of the above mechanistic models reveals that though they are 

superior to macro-statistical models in representing the risks more accurately, they are 

more prone to numerical uncertainties as the number of input parameters significantly 

increases.   For example, in the PBPK models, there is uncertainty in the estimation of the 

physiological, biochemical and physico-chemical parameters [Farrar et al., 1989] and, the 

two-stage carcinogenesis model is inherently stochastic.  Even in the simplest case 

wherein the hazard function is approximated by a deterministic solution as given in 

Equation 2-29, the two-stage model consists of parameters such as cell division (α), cell 

death (β) and mutation rates (µ) that are uncertain.  The parallel developments in 

mechanistic modeling and uncertainty analysis have resulted in some combination of 
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uncertainty analysis and mechanistic modeling, especially in a few PBPK models 

[Woodruff et al., 1992, Cronin et al., 1995, Thomas et al., 1996].  However, uncertainty 

analysis models have been limited to probabilistic methods and Monte Carlo analysis. 

Cronin et al. use normal, dirichlet and lognormal distributions to replace mean values that 

are commonly used to represent parameters such as flow rates, partition coefficients and 

metabolic constants and use Monte Carlo analysis to propagate these distributions 

through a PBPK model [Cronin et al., 1995].  Similarly, Thomas et al. used a PBPK 

model with Monte Carlo simulation to study the effect of interindividual variability in 

physiological parameters on the biological exposure indices (BEIs) for benzene, carbon 

tetrachloride, chloroform, methylene chloride, and trichloroethylene [Thomas et al., 

1996].  As biological models grow more in complexity and application, there is a greater 

need for an in-depth formal uncertainty analysis, as the success and validity of a model 

eventually rests on how well the available information is used and represented. 

  

2.4 Conclusions 

 Until recently, uncertainties in risk assessments were characterized qualitatively, 

and not quantitatively, with the qualitative aspect being replaced by overly conservative 

estimates.  EPA guidelines recommended the use of 95th percentile values for calculating 

exposures and safety factors in the orders of magnitude for the calculation of reference 

doses.  These methods rely on point estimates and fail to capture the entire range of 

uncertainty.  It has been shown that the reliance on such measures usually leads to an 

overestimation of the risk values to unrealistic levels, and provides one with a false sense 
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of security of the values [Burmaster 1993; Bogen, 1994].  Though the methods can be 

justified to be protective of sensitive sub-populations, uncertainty is not completely 

represented.  Research in the quantitative characterization of uncertainties in human 

health risk assessment is still in its’ infancy, with most advances having taken place in the 

last decade or so.  Even though many papers have been written in this field, most deal 

with the propagation of numerical values of uncertainties derived from probabilistic 

concepts.  Monte Carlo simulation has been the most widely used method for propagating 

uncertainties. Though Monte Carlo analysis has proven to be a powerful tool in 

propagating uncertainties, one needs to exercise caution in using this technique as the 

method is dependent on the choice of the distributions for the input parameters and the 

dependency structure of the model.  In a number of cases the analyst has to rely on scarce 

data to derive precise distributions.  In cases where data is limited it seems more 

appropriate to model the uncertainties using methods that are based on weaker axioms.  It 

should also be noted that various correlations among the model parameters may exist and 

Monte Carlo analysis conducted without a good knowledge of the dependencies between 

parameters can yield erroneous outputs [Ferson, 1996 and Frederick, 1995].  There are, 

however, alternative methods such as fuzzy set theory, evidence theory and possibility 

theory that have proven to be useful in modeling some types of uncertainty.  The lack of 

maturity of some of these alternative methods has hindered the scientific community 

from embracing newer concepts.  In the next chapter of this dissertation we present 

methods that expedite the application of possibility theory to risk assessments.  These 

new methods are useful in deriving possibility distributions from empirical data and are 

meant to assist an analyst in representing parametric uncertainties.  



 

 

 

 

 

 

 

 

Chapter 3 Theoretical Development of Possibility 

Distributions 

The purpose of this chapter is to introduce methods to derive possibility distributions for 

representing sparse or conflicting data. 

 

In cases where there is a severe lack of information it is natural for analysts to 

quantify ambiguous and vague statements as a range of numbers.   The less the 

supporting evidence is the more imprecise and vague the statements usually are.  To give 

precise statements about the values of variables would be to assume more information 

than is available.  Though probability theory can be used to model randomness, it fails to 

consider other types of uncertainty, further it is extremely difficult to model these other 

types as random variables.   In the absence of complete data, variations in the true value 

of the parameters of a probability distribution have usually been modeled using second-

order distributions where some other distribution models the uncertainty in the 

parameters.  The parameters are, however, not necessarily random or even if they are, it 

can be computationally expensive to model these parameters as such.  It should be noted 
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that in most situations it is not the chance that a particular value occurs that is of interest, 

but the actual variation in the variable itself.   Thus it might be prudent to use models that 

are not as constrained as probabilistic models.  Also, in many cases representative power 

(depicting the current state of the uncertainty) of the model might be more useful than the 

predictive power (predicting the future state).  Due to the shortcomings of the current 

methods to model all the uncertainties, new methods are required to model uncertainty 

that is not always random.  Possibility theory offers a flexible and a robust framework to 

derive and naturally represent uncertainty from data that is vague or ambiguous.  It is 

especially useful during the explorative phases of risk assessments where the available 

data do not satisfy the statistical significance requirements, or the heterogeneity of the 

data demand extensive computations for the task at hand.   To date, due to its novelty and 

lack of adequate methods to generate possibility distributions, possibility theory has had 

limited applications in risk assessments.  Though significant progress has been made in 

the derivation of possibility distributions for representing expert judgments [Sandri et al., 

1995; Walley, 1991; Walley and de Cooman, 2001], methods for deriving possibility 

distributions from empirical data have been rare and few [Joslyn, 1994; Joslyn 1997a; 

Joslyn, 1997b].  In this chapter we provide alternate methods for developing possibility 

distributions from various types of empirical data. 

 

3.1 Possibilistic Elicitation and Representation 

The challenge of any uncertainty analyst is to determine the appropriate method to 

calculate and represent the uncertainties of the model parameters.  The discussion in 
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Chapter 2 outlined some of these methods, however, most of the methods were restricted 

to probability theory wherein probabilities are non-overlapping, disjoint sets of numbers 

with well-defined boundaries.  In the case of possibility theory, the form of the 

representation scheme is not as obvious as those derived for probabilistic analysis. 

Literature on derivation of possibility distributions is very limited [Klir, 1997], especially 

in the derivation of empirical possibility distributions [Joslyn, 1994]. Possibility theory 

has long been associated with fuzzy set theory [Zadeh, 1978], in that possibility 

distributions were considered to be membership functions.  If )x(Aµ represents the 

membership of a fuzzy set defined over a universe X, then the possibility distribution is a 

fuzzy set if, 

)x()x( Aµπ =A         (3-1) 

The association of possibility theory with fuzzy set theory has led to the 

development of possibility theory as a model for subjective judgments and hence 

possibility distributions were derived for modeling linguistic variables (such as in fuzzy 

set theory).  This however has led to constructing possibility measures that satisfy some 

linguistic criteria.  In particular, fuzzy sets represented by membership functions model 

vagueness by specifying the degree to which an element x belongs to the set A, while 

possibility distributions represent gradations of possibility of an element belonging to 

consonant intervals Ai.  

Another approach to the development of possibility distribution functions is 

through the transformation of probability distribution functions [Klir, 1992, 1993; Dubois 

et al., 1993].  Given a unimodal probability density function p with mode xo, a possibility 
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distribution can be derived by the following transformation: 

�� +==
u

l

x

x'

x

x

)'()( p(v)dvp(v)dvxx ππ      (3-2) 

where x' is such that p(x) = p(x') < p(xo), and, lx , ux are the lower and upper limits of the 

probability distribution. 

The above two methods for computing possibility distributions do not completely 

assist modeling empirical interval data as the fuzzy set approach, on the basis of its 

interpretation, has been predominantly used to model subjective data while the 

probability-possibility transformation is based on randomness only.  

Possibility distributions can also be viewed as resulting from consonant random 

sets.  This concept arises from Dempster and Shafer's theory (DST) when the evidence 

focuses on consonant support functions [Shafer, 1976].  In the case of deriving empirical 

possibility distributions it is more natural to consider random sets (or intervals) and build 

a distribution based on the original set of interval data.  This interpretation is more 

realistic as experimental observations are usually recorded as ranges of number.  To this 

effect, Joslyn [1992, 1997b] has developed a method that calculates a possibility 

histogram from random sets.  Joslyn's method, however, derives possibility measures 

based on only consistent random sets (where measurements are not required to be nested 

intervals, but it is only sufficient that all the measurements intersect) rather than 

consonant sets (measurements are represented as nested intervals).  Though possibility 

distributions can be derived from measurements that satisfy the consistency criteria only, 

we enforce the property of consonance to aid in the development of possibility 
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distributions.  There is no conclusive evidence on which assumption leads to the most 

appropriate possibility distribution, however, assumption of consonance in this 

dissertation has allowed more natural derivation of possibility distributions from a variety 

of measurement types.   

Methods alternate to Joslyn’s method are proposed to build consonant possibility 

distributions from not only consistent measurements but also other kinds of measurement 

types.  New methods are developed for consistent as well as non-consistent and disjoint 

measurements.  In the selection of intervals and calculation of weights from any of these 

measurements, the underlying evidence is considered to be coherent i.e., evidence points 

in one direction and hence is consonant.  Consonance is ensured by appropriate selection 

of overlapping intervals and assignment of weights derived by conventional frequency 

analysis.  Assumption of consonance is one of the major assumptions in possibility 

theory.  This assumption seems to be reasonable given that there is only one or a few 

values out of many that are possible and that inductive reasoning suggests that an 

analysts’ result should converge to this one value.  This does not mandate that this value 

is certain to occur but that the evidence suggests that this is the value with the highest 

possibility.  Physically this indicates that if an event that is a set of values does not 

include the most possible value(s) then it is not necessary for the event to occur but it is 

possible to occur.  This is consistent with the fact that something has to be completely 

possible before it is necessary.  The requirement of consonance also ensures that 

possibility distributions are either strictly decreasing or strictly increasing monotonic 

functions or unimodal non-monotonic distributions such that, given the most possible 

interval q , and for any value x, the distribution )(xπ is strictly increasing when qx ≤  
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and strictly decreasing when qx ≥ .   

In addition to the requirements presented above, other important definitions that 

formalize the basic concepts required for the development of possibility distributions are 

presented formally in the sub-sections below. 

Definition 3-1: Random set 

Given a function m on a power set )(Ω℘ , such that ]1,0[)(: →Ω℘m , a random set SR, is 

defined as a vector of tuples, { }jm,A j  where )(Ω∈℘jA , Nj ≤≤1 , nN 21 ≤≤  and 

)( jj Amm = , n  is the number of elements in Ω , N is the number of elements in the 

random set, and jm  can be interpreted as the weights attached to each component jA .  

Definition 3-2: Focal set 

A set of all jA  for which 0>jm forms the focal set F ,  

{ }0|)( >Ω∈℘= jj mAF  

Definition 3-3: Random interval 

A random set is a random interval if it is defined on a real line ℜ , i.e., if the universe of 

discourse, ℜ=Ω .  When a random interval is used, individual elements (or numbers) 

will be represented by nkxk ,...,2,1 , = . 

Definition 3-4: Consistent random sets 

A random set SR is said to be consistent if the core of the random set is non-empty. The 

core of the random set is, 
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�
FA

j

j

AC
∈

=)S( R         (3-3) 

For a consistent random set, 

∅≠)S( RC           (3-4) 

Definition 3-5: Consonant random sets 

A random set SR is consonant, if for some permutation of the FA j ∈ , the elements jA  of 

the random set are such that, NAAA ⊆⊆⊆ ....21 , Nj ≤≤1 . 

Definition 3-6: Fuzzy Measure and Possibility measure 

A fuzzy measure ]1,0[)(: →Ω℘υ  is required to satisfy the following axioms: 

(1) 0)( =∅υ  and 1)( =Ωυ  

(2)    (B)(A)  B,A if   ,BA, υυ ≤⊆Ω⊆∀  

 Now, a fuzzy measure is a possibility measure ]1,0[)(: →Ω℘Π  if it satisfies the 

following property in addition to the ones listed above: 

 (3) For a collection of intervals jA , Nj ≤≤1 , the possibility of the union of finite 

number of events,  

( )j
Jj

J

j
j AA Π=Π

∈=

max)(
1
� , JjA j ∈∀  ,       (3-5) 

Possibility measures are plausibility measures as derived by Dempster-Shafer theory for 

those that are defined over consonant sets.  

Definition 3-7: Necessity measure 
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The dual of a possibility measure is a necessity measure ]1,0[)(: →Ω℘Ν , and is given 

as, 

)A(1N(A) Π−=         (3-6) 

Necessity measures are belief measures as derived by Dempster-Shafer theory for those 

that are defined over consonant sets. 

Definition 3-8: Possibility distribution function 

Every possibility measure is uniquely associated with a possibility distribution function, 

]1,0[: →Ωπ , defined by { }( ) Ω∈Π= ωωωπ ,)( .  

From the above it can then be derived that,  

( )AA ∈=ΠΩ∈℘∀ ωωπ )(max)A( ),(      (3-7) 

In the case when the distribution is continuous, max is replaced by sup.  

From Equation 3-6, a necessity measure is given in terms of the possibility distribution 

as, 

))(1min()( Α∉−=ΑΝ ωωπ        (3-8) 

In the case when the distribution is continuous, min is replaced by inf. 

Definition 3-9: Possibility measures are super-additive and necessity measures are 

sub-additive 

Given a possibility and necessity measure on sets A and B, 

1)A((A) ≥Π+Π         (3-9) 
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1)A()A( ≤Ν+Ν         (3-10) 

Definition 3-10:  Possibilistic weights 

Given a set of consonant intervals on ℜ , NAAA ⊆⊆⊆ ....21 , Nj ≤≤1 , if 

)( kAm represents the weights assigned to the k th consonant interval and if the elements 

of the intervals are represented by kx , and can be arranged such that, 

)()()( 11 +− ≥≥ kkk xxx πππ and if { }jj xxxA ,.....,, 21= then the possibility, 

�
=

=
N

kj
jk Amx )()(π         (3-11) 

Or alternatively, weight assigned to each interval can be obtained from the possibilities 

as, 

)()()( 1−−= jjj xxAm ππ        (3-12) 

When deriving set-based functions, however, the weights are over sets rather than 

individual elements and cannot be arranged as above. Therefore, when the possibility 

distribution is derived from discrete random measurements represented as intervals jA , 

possibilistic weights are given as, 

�
∈

=
jAx

jAmx )()(π         (3-13) 

where, )(xπ is the possibilistic weight of the elements included in the random interval 

jA .  
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Definition 3-11:  Triangular norm (T-norm) 

A triangular norm (T-norm) is a binary conjunctive operator, ]1,0[]1,0[]1,0[: →×T , that 

satisfies the following conditions,  

]1,0[ , , ∈∀ zyx , 

1. ),(),( xyTyxT =  (commutativity) 

2. ),(),( zxTyxT ≤ , if zy ≤  (monotonicity) 

3.  )),,(()),(,( zyxTTzyTxT =  (associativity) 

4. xxT =)1,(  

Examples of common T-norms include the product norm used in probabilistic 

analysis to determine the intersection of two crisp sets and the min norm used extensively 

in fuzzy set theory to determine an intersection of fuzzy sets (see Gupta and Qi, 1991 for 

a list of triangular norms). 

3.2  Developing Possibility Distributions  

In a typical experiment, measurements can be any of the following types of 

measurements: 1) consonant measurements; 2) consistent measurements; 3) non-

consistent, non-disjoint measurements, 4) point estimates; and 5) disjoint measurements. 

The derivation of possibility distributions is specific to the form of measurement and 

hence the methodology used to develop the distributions should be appropriately 

developed.  The following sections describe methods that can be used to derive 



 

69 
 

 

possibility distributions for each of the measurement types.  

3.2.1 Developing Possibility Distributions from Consonant Measurements  

Since possibility distributions are functions on consonant intervals, a possibility 

distribution from consonant intervals is trivially obtained and no specific methodology is 

developed.  Simply, if nA j .....1j , =  is a set of n consonant observations, then a 

possibility distribution is obtained as a contour function over a possibility measure as 

given in Definition 3-10 as,  

�
∈

=
jAx

jAmx )()(π         (3-14) 

where, )( jAm  are the weights strictly assigned to the j th observation.  

 

3.2.2 Method I: Developing Possibility Distributions from Consistent or Non-

Consistent, Non-disjoint Measurements 

Consonant measurements are more easily obtained for expert judgments where 

the measurements can be elicited for nested data sets, however, in experimental analysis 

consonance at the observation level cannot be guaranteed and hence consistent 

measurements as defined in Definition 3-4 are somewhat more common than consonant 

distributions.  Just as consistent measurements are more common than consonant 

measurements, partially overlapping non-consistent measurements are even more 

common.  A method for deriving consonant intervals from such non-consonant 

measurements is derived in this section.  The method presented here differs from that 
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presented earlier in the literature [Joslyn, 1994] in that the measurements are not required 

to be consistent and a possibility distribution is defined over consonant intervals that are 

derived from the original consistent or non-consistent measurements.  The requirement 

for using this method is however that the measurements are non-disjoint (a method for 

deriving possibility distributions for disjoint measurements in given in subsequent 

sections).  Transforming non-consistent, non-disjoint intervals to consonant intervals 

allows one to define possibility distributions as a set-based rather than a point function.  

Noting that possibility distributions are strictly monotonic or non-monotonic unimodal 

functions on consonant intervals a methodology that derives consonance through 

intersecting elements of the measurements and then redistributes the weights from the 

non-consonant to consonant intervals is presented in the following sub-sections. 

 

3.2.2.1 Deriving Nested Intervals using Method of Intersecting Sets 

Consider a system that can be described within a domain },......,,{ 21 nxxxX = , the 

behavior of which is described by evidence obtained as observations over a collection of 

sets, F .  Let { }jj wAF ,=  represent the original set of focal elements along with their 

weights. If M measurements are observed, then the weights iw  of each observation jA  is 

calculated by frequency analysis as, 

M

)n( j
j

A
w =          (3-15) 

where, )( jAn is the frequency count of  set jA ,  and M)(   , 1
j

== �� j
j

j Anw . 
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In conventional probability analysis, the observations A1 and A2 are disjoint such 

that ∅=∩ 21 AA , and the frequency of occurrence of any event jA  is simply the ratio of 

the count of a particular event and the total number of occurrences of all the events. Such 

disjoint measurements are, however, rare in the real world; instead, measurements are 

usually such that F consists of overlapping sets jA .  In a measuring device that reveals 

evidence that is coherent, the sets jA  are nested, in which case possibility distributions 

are trivially obtained over a set of consonant intervals.  If F , however, consists of non-

consonant sets, the vector of original focal elements F  has to be transformed such that 

consonance is achieved.  In deriving the set of consonant focal elements it is assumed that 

the underlying evidence is coherent such that the observations obtained should reveal 

intervals that decrease in specificity.  This is accomplished such that the smallest focal 

element (having the least specificity) is selected as the interval that has the most 

intersections with the observations and the next smallest one as that having second most 

intervals and henceforth.  This process yields Q unique countable intersections and a set 

{ } QkG ,...,2,1  ,)B(,B kk == ν  of intersections, where Bk is the interval obtained by the 

k th intersection of original intervals iA  and jA , and )B( kν  is the weight assigned to the 

corresponding Bk.  Union of all the sets, �
FA

j

j

AS
∈

= where 0)( ≠jAw  forms the support 

interval and is derived as: 

��
�

��
�=

∈∈∈∈
)(max),(min

,,
xxS

iiii AxFAAxFA
      (3-16) 

 Weights kν assigned to each of the Q elements of G  are determined by utilizing 
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any of the triangular norms (see Definition 3-11) for conjunctions as kji AA ),()B( k Τ=ν ; 

where kji AA ),(Τ  is any conjunctive triangular norm operating on the sets iA  and jA  that 

form the k th intersection.  Since the dependencies between various sets is unknown and 

it is judicious to choose the most conservative estimate, the min norm is considered to be 

most appropriate to determine weights )B( kν of the conjunction of sets iA  and jA , and is 

given as, 

( )
kji ww ,min)B( k =ν         (3-17) 

Since a min norm is based on a weaker axiom of non-additivity, the weights do not 

necessarily add to one, and hence the weights derived are normalized as, 

�
=

= Q

1k
k

k
k

)B(

)B(
)B(

ν

νη          (3-18) 

such that, �
k

k )B(η =1. 

In deriving the elements of G , however, some elements by the virtue of their 

origin from the intersections from parent sets (sets from which the intervals were derived) 

tend to be consonant with the parent set while they are not necessarily consonant with 

other parent sets.  Therefore, if Q represents the total number of focal elements in the 

focal set G  derived from the intersections of original measurements, there are QH 

elements in the consonant set H , and QI elements in the non-consonant set I , such that, 

 0.1)(B)(B
IkHk QB

k
QB

k =+ ��
∈∈

ηη       (3-19) 
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Consonant intervals can be extracted from the intersection set G as a combination of 

frequency analysis and expert judgments.  The most possible interval being one that 

occurs most frequently and that in which an expert has the most confidence in.  Once the 

task of selecting consonant intervals is accomplished, the weight from the remaining non-

consonant intervals is redistributed to the consonant intervals in such a manner that the 

total information from underlying evidence is preserved. 

 

3.2.2.2 Redistribution Factor 

Weights are redistributed from non-consonant to consonant sets according to the 

dissonance between individual intersecting sets (the conflict between two sets).  The 

logic used here is that the higher the similarity between two sets (lower the conflict) the 

greater is the weight that can be transferred between the two sets.  Parameters that are 

useful in the redistribution of weight are identified as cardinality - iH , and the number 

of common elements between the sets - ji IH ∩ .  In case of non-integer intervals, 

cardinality .  can be replaced by the length l  of the interval defined over a real line and 

the set of real numbers comprising the intersecting interval can be determined as the 

length common to both the intervals.  If β represents the similarity of two sets given as, 

i

ji
ij H

IH ∩
=β          (3-20) 

or for a set of real numbers, 
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[ ]
]H[

IHmax,IHmin

i

jiji
ij l

l iiii ∅≠∩∈∅≠∩∈
=

ωωωω
β    (3-21) 

where, 

 [ ].l  denotes the length of the interval and is simply given as abbal −=],[ , 

then, a redistribution factor κ is computed as, 

�
=

=
HQ

1i
ij

ij
ij

β

β
κ          (3-22) 

such that, for any j, �
=

=
HQ

1i
ij 0.1κ . 

Redistribution factor can be viewed as the fraction of the weight that is transferred from 

the non-consonant to the consonant interval. The redistribution weight ρ  is then 

calculated by determining the weight of the non-consonant interval Ij that is transferred to 

the corresponding consonant interval Hi.  Therefore, for the i th consonant interval and j 

th non-consonant interval,  

)I(* jij ηκρ =ij        (3-23) 

From Equation 3-21 it is clear that when Ij intersects with Hi and no other set then β is 1 

thus assigning the entire weight of I to H, and also, when H does not intersect with any 

portion of I, β  is 0.  The final weights of the initial consonant sets as determined after 

the redistribution is given over the entire set of non-consonant intervals as, 
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��
==

+=+=
II Q

1j
jiji

Q

1j
ii )I()(H)(H)(H ηκηρη ijm     (3-24) 

The above process entails that the total weight is preserved among the consonant data 

intervals.  It can be proved that �
=

=
HQ

i 1.0)(H
1i

m . From Equation 3-24 and with the 

constraint �
=

=
HQ

1i
ij 0.1κ  from the previous page, we have 

1.0                 

)I()(H                

)I()(H                

)I()(H)m(H

IH

I HH

H IHH

Q

1j
j

Q

1i
i

Q

1j

Q

1i
ijj

Q

1i
i

Q

1i

Q

1j
jij

Q

1i
i

Q

1i
i

=

+=

��
�

�
��
�

�
+=

+=

��

� ��

����

==

= ==

= ===

ηη

κηη

ηκη

 

The possibility distribution from the weights is then obtained as follows: 

�
∈

=
iHx

i )H()( mxπ         ( 3-25) 

3.2.2.3 Algorithm 

An outline of the algorithm for deriving a possibility distribution from non-

consistent and non-disjoint intervals is given below: 

Step 1: Find the intersections of the various intervals and rank the intervals according to 

their cardinality, ji AA ∩ . 

Step 2: Calculate the weights of intervals of Step 1 by applying t-norms to the 

intersecting intervals (the min method is recommended when the dependency 
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between the intervals is unknown), ( )
kji ww ,min)B( k =ν . 

Step 3: Choose the smallest interval with the most intersections as the reference interval 

and select the subsequent intervals such that they are consonant, 

IQ-Q21 A.......AA ⊆⊆⊆ . 

Step 4: Redistribute the weights from the non-consonant to the consonant interval by the 

method outlined above. 

 

3.2.2.4 Example: 

In this example we show the application of the above steps and compare the 

method with that of Joslyn’s.  Consider data obtained as non-consonant intervals (given 

in Table 3-1, Figure 3-1), where the imprecision in the data is assumed to be due to the 

lack of the instrument to record precise values or due to the observer’s inability to record 

precise numbers.  Data such as these are common in the real world wherein they are 

presented as a number given within a certain error value.  In Table 3-1, 4 sets of such 

observations have been recorded.  From the graphical representation as shown in Figure 

3-1, it can be seen that the set of numbers within the range [4,5] intersect the observation 

sets the most (4 times).  

Table 3-1: Consistent interval observations 

Observation No. Set 
1 [1,4] 
2 [2,5] 
3 [1,5] 
4 [3,6] 
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 Observation 

O1 

O2 

O3 

O4 

X 1 2 3 4 5 6 7
 

Figure 3-1: Graphical representation of observed consistent data. 

Joslyn’s Method 

The method consists of determining the focal elements (non-recurring intervals) 

and computing the frequencies of each focal element's occurrence.  In this example, the 

focal element set is given as, 

[ ] [ ] [ ] [ ]6,3,5,1,5,2,4,1FE = , 

and the frequencies of occurrence are, 

  [ ]{ } [ ]{ } [ ]{ } [ ]{ }25.0,6,3,25.0,5,1,25.0,5,2,25.0,4,1=ES  

The possibility distribution function is now derived as, ( )�
∈

=
iE

iEm
ω

ωπ )(  

[ ]
[ ]
[ ]
[ ]
[ ]�

�
�

	

��
�




�

∈
∈
∈
∈
∈

=

6,525.0
5,475.0
4,30.1
3,275.0
2,15.0

)(

ω
ω
ω
ω
ω

ωπ  

The above derivation is plotted in Figure 3-2. 



 

78 
 

 

 

 

 

 

 

 

 

 

0.25 

0.5 

0.75 

1.0 

x 1 2 3 4 5 6 7 

π  

 

Figure 3-2: Possibility histogram derived from consistent data observations 
(Joslyn’s Method). 

 

Method I: 

 This method consists of determining the intersections of various intervals and 

then computing the frequency of occurrence of each of these intervals.  The matrix below 

shows these intersecting intervals. 

 

�
�
�
�

�

�

�
�
�
�

�

�

]6,3[
]5,3[]5,1[
]5,3[]5,2[]5,2[
]4,3[]4,1[]4,2[]4,1[

   

4

3

2

1

4321

A

A

A

A
AAAA

 

Figure 3-3: Matrix of sets resulting from intersection of original consistent 
observations.  

 

Once the intervals are determined the frequency of occurrence of these intervals is 

computed.  The interval forming the support of all the focal elements is calculated by 

taking the min and max of all observations.  Table 3-2 and Table 3-3 (support, S = [1,6]) 
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show the weights determined for each set from the original observations and those 

computed from the intersecting sets shown in Figure 3-3. 

 

Table 3-2: Weights assigned to each interval according to frequency analysis 

Set Count Weight (wi) 
[1,4] 
[2,5] 
[1,5] 
[3,6] 

1 
1 
1 
1 

0.25 
0.25 
0.25 
0.25 

 

Table 3-3: Weights computed for each intersecting set using the min norm  

Set )B( kν  Normalized Weights  
( )B( kη ) 

[1,4] 
[2,4] 
[3,4] 
[2,5] 
[3,5] 
[1,5] 
[3,6] 
[1,6] 

0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 

0.125 
0.125 
0.125 
0.125 
0.125 
0.125 
0.125 
0.125 

 

A study of the Table 3-3 (showing intersecting sets) reveals more than one consonant 

group of intervals.  The choice of which group to choose depends on the analyst.  For 

example, one set of consonant intervals could be, [3,4], [2,4], [2,5], [1,5], and [1,6].  This 

excludes three intervals, [1,4], [3,5], and [3,6].  In determining the extent of the effect of 

these intervals we re-distribute the weights according to the number of intersecting 

elements with each of the consonant intervals.  For example in the case of the overlap of 

interval [2,5] with the first consonant interval [3,4], the number of overlapping elements 

(considering a granularity of 1) is 2.  This value is divided by the cardinality of the 
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consonant interval to account for the effect of spread of each interval (the more the 

spread the less the effect of the weight of the non-consonant interval) (Equation 3-20). In 

the case of the consonant interval [3,4], the cardinality is 2, hence the weight to be 

distributed is factored by 1.  The factored weight is then normalized over the weights of 

all the consonant intervals (Equation 3-22).  The original weight of the consonant interval 

[3,4] is then added to the factored weight of the non-consonant interval (Equation 3-23 

and Equation 3-24).  The process of re-distribution is then repeated for other consonant 

intervals.  By this process the weights of the consonant intervals are updated (Table 3-4) 

and the possibility levels are determined as given by Equation 3-25.  The choice of 

consonant intervals in this example has been more arbitrary and has depended on expert 

judgments, however, more formal quantitative techniques can be used to determine the 

most appropriate set.  Recently there have been attempts to apply the principles of 

entropy and similarity measures to the method in order to determine the most appropriate 

set of consonant intervals [Chavez, 2002]. 

Determining the redistribution weights: 

238.0
21.4
1

5141312111

11
11 ==

++++
=

βββββ
β

k ;  

Similarly, 

18.0 ;142.0 ;157.0 ;163.0 ;171.0 ;19.0

204.0 ;214.0 ;178.0 ;18.0 ;188.0 ;258.0 ;272.0 ;258.0

535251434241

3332312322211312

======
========

kkkkkk

kkkkkkkk

 

The redistribution weights ρ  are calculated from Equation 3-23 as,  

 02975.0125.0*238.0)I(* 11111 === ηκρ   
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Table 3-4: Determining the similarity between focal elements for redistributing 
weights from non-consonant to consonant intervals 

Hi Ii ijβ  

[1,4] 
1

2
2

4,3

]4,1[]4,3[
==

∩
 

[3,5] 
1

2
2

4,3

]5,3[]4,3[
==

∩
 

[3,4] 

[3,6] 
1

2
2

4,3

]6,3[]4,3[
==

∩
 

[1,4] 
1

3
3

4,2

]4,1[]4,2[
==

∩
 

[3,5] 
66.0

3
2

4,2

]5,3[]4,2[
==

∩
 

[2,4] 

[3,6] 
66.0

3
2

4,2

]6,3[]4,2[
==

∩
 

[1,4] 
75.0

4
3

5,2

]4,1[]5,2[
==

∩
 

[3,5] 
75.0

4
3

5,2

]5,3[]5,2[
==

∩
 

[2,5] 

[3,6] 
75.0

4
3

5,2

]6,3[]5,2[
==

∩
 

[1,4] 
8.0

5
4

5,1

]4,1[]5,1[
==

∩
 

[3,5] 
6.0

5
3

5,1

]5,3[]5,1[
==

∩
 

[1,5] 

[3,6] 
6.0

5
3

5,1

]6,3[]5,1[
==

∩
 

[1,4] 
66.0

6
4

6,1

]4,1[]6,1[
==

∩
 

[3,5] 
5.0

6
3

6,1

]5,3[]6,1[
==

∩
 

[1,6] 

[3,6] 
66.0

6
4

6,1

]6,3[]6,1[
==

∩
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Other values of ρ  are similarly computed and are added to the each of the consonant 

intervals to determine the final mass of each consonant interval.  Therefore, using 

Equation 3-24, 

224.0)272.0)(125.0()258.0)(125.0()238.0)(125.0(125.0           

125.0]H[ 1312111

=+++=
+++= ρρρm

 

Similarly, 

[ ]
[ ]
[ ]
[ ] 185.0)18.0)(125.0()142.0)(125.0()157.0)(125.0(125.0H

191.0)163.0)(125.0()171.0)(125.0()19.0)(125.0(125.0H

199.0)204.0)(125.0()214.0)(125.0()178.0)(125.0(125.0H

201.0)18.0)(125.0()188.0)(125.0()238.0)(125.0(125.0H

5

4

3

2

=+++=
=+++=

=+++=
=+++=

m

m

m

m

 

Table 3-5: Final weights of the consonant intervals 

Set Weight )(xπ  
[3,4] 
[2,4] 
[1,4] 
[1,5] 
[1,6] 

0.224 
0.201 
0.199 
0.191 
0.185 

1.0 
0.776 
0.575 
0.376 
0.185 

 

The possibility distribution thus derived is shown in Figure 3-4. Dotted line shows the 

possibility distribution as obtained using Joslyn’s method.  Comparison of the two 

distributions shows that the distribution as derived using Method I yields a distribution 

that assigns higher values to the intervals that are assumed consonant.  This is due to the 

fact that the consonant intervals dominate the non-consonant intervals in the set of all 

intersections, and the weight is transferred from the non-consonant to the consonant 

portions.  This might be a desirable characteristic when one intends to let the evidence 

lead to the most possible value by assigning more weight to the consonant portion of the 

data and less weight to the non-consonant portion. 
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Figure 3-4: Possibility distribution as determined from the proposed Method I 
(Dotted line represents the distribution derived using Joslyn’s method). 

 

3.2.3 Method II: Developing Possibility Distributions from Singletons and Disjoint 

Measurements  

When generating uncertainty distributions from point estimates or disjoint 

intervals, one might be tempted to use probability distribution, however, when the 

number of observations are too few and the parameters for deriving the distribution 

cannot be determined precisely it might be beneficial to use a less constrained 

distribution. Possibility distributions offer a viable solution to cases such as these. For 

example when the observations from experimental analysis or on-site measures are few 

and sparse as shown in Figure 3-5, finding the shape and scaling factors required for a 

probability distribution requires assumptions of the underlying distribution and can be a 

challenging task. In such situations, a possibility distribution that does not assume any 

randomness seems more appropriate and an approach that is consistent with possibility 

measures for deriving an uncertainty distribution is presented below.  
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Figure 3-5: Unique point estimates in a single experiment. 

3.2.3.1 Developing Possibility Distributions from Singletons 

Let Mixi ....1 , =  be M observations that are points on the real line and let )( ixw  

be the weights assigned to each observation.  Initial weights can be determined using 

frequency analysis as, 

M
M

xw i
i =)(          (3-26) 

where, 

  iM is the number of occurrences of the data point ix , and 

M  is the total number of observations. 

Given the observations and weights, standard statistical analysis techniques can be used 

to determine the basic properties of the data to determine a preliminary convergence 

point.  For example the central tendency in conjunction with variance can be used to 

approximately determine a location for the most possible value.  This seems similar to the 

conventional probability analysis; however, its intent differs significantly in that 

observations that eventually describe a possibility distribution are not assumed to 

represent any particular randomness in the system.  The statistic used in deriving a 

possibility distribution, rather than indicating any functional form of the possibility 
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distribution merely denotes the confidence of a domain expert in a value or a range of 

values that are most possible and most optimal.  Selection of an appropriate anchor can 

thus be directly based on the content of the data and/or on the expertise of the domain 

expert.  Once the appropriate anchor is determined, a possibility distribution is 

determined by organizing the data points such that the most similar observations are 

aggregated into a cluster with the observation closest to the anchor forming the most 

possible interval.  The concept underlying this is that the value most similar to the 

optimal value has a greater possibilistic weight.  Since possibility distributions are 

assumed to be unimodal, the observations are subsequently ordered such that the 

observations less than the numerical value of that anchor form the increasing segment 

and the observations to the right form the decreasing segment of the distribution.  

Therefore, if the central tendency statistic of the data, cx , represents the anchor, 

and the observations are organized such that the most similar measurements are grouped 

together then the possibility distribution consists of an increasing segment such that, x∀ , 

ci
L

i
L

i
L xxxx ≤≤≤ +− 11 , with the corresponding mappings,   

)()()( 11 +− ≤≤ i
L

i
L

i
L xxx πππ , and for the decreasing segment as, 11 +− ≤≤≤ i

U
i

U
i

U
c xxxx  

and )()()( 11 +− ≥≥ i
U

i
U

i
U xxx πππ respectively.  The new ordered observations i

Lx  and 

i
Ux  are determined such that the most similar measurements are adjacent to each other. 

The support of all the singleton observations is determined as, 

[ ])(max),(min
 

xxS
FxFx ∈∈

=         (3-27) 

Nesting of intervals is then resolved such that the intervals that are most possible are 
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grouped together followed by those that are possible to a lesser extent and so forth. Due 

to their strong pattern recognition features, the concepts of hierarchical clustering 

algorithms [Jain, 1999] seemed most appropriate for achieving this aggregation of point 

estimates into nested intervals.  In a hierarchical clustering algorithm, each object in a 

sample is compared to other objects and the most similar objects as determined by a 

metric, along with a cost function, is pooled together to form a cluster.  For example, if 

)( iOδ  represents a metric that defines an arbitrary object iO , then objects with similar 

δ s are grouped together such that the new group jiNew OOO ∪=  forms the point of 

reference for subsequent clustering. Each new cluster NewO  thus formed is grouped with 

other similar clusters iteratively until all the clusters are combined together in a hierarchy 

of similarities.  One of the common cost functions used to achieve this grouping is based 

on the single-linkage clustering algorithm [Jain, 1999] and is defined as, 

)),(),,((min
, cjciOxOx

xxxx
jjii

δδ
∈∈

=∆       (3-28) 

where, 

( )
pd

k

p
kckici xxxx

/1

1
,,),( �

�

�
�
�

� −= �
=

δ       (3-29) 

When p=2, Equation 3-29 represents the well known Euclidean norm.  Given that the 

data are given as point estimates in one-dimension (d=1), a Euclidean norm should 

suffice and Equation 3-29 can be re-written as, 
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( )( ) cicici xxxxxx −=−=
2/12),(δ       ( 3-30) 

A dendrogram that is derived using single-linkage clustering is shown in Figure 3-6.  

From the dendrogram it can be seen that intervals can be nested in only one direction 

such that each successive interval includes the previous interval. A graphical 

representation of these intervals is shown in Figure 3-7.  Once the observations are 

aggregated, intervals are determined using the end points of the newly aggregated set 

such that the new set, 

( ) ( )[ ]NewNewi OxxOxxC ∈∈= max,min       (3-31) 

 

x1 x2 x3 x4 x5 x6 

δ 

x 
 

Figure 3-6: A sample dendrogram representing hierarchical clusters for point 
estimates shown in Figure 3-5. 
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X1 x2 x4 x3 x5 x6 

 

Figure 3-7: Nesting of the most optimum intervals as determined from the distance 
metric and cost function. 

 

Using Definition 3-10, weights for each of the new intervals can now be determined from 

the original weights as: 

( ) ��
+∈∈

−=
1

)()(
ii CxCx

i xwxwCm        (3-32) 

Equation 3-32 can be interpreted as the weight that belongs only to that interval and not 

to any of its subsets.  The process of combining measurements using the cost function 

yields a total of QH consonant intervals.  The possibilistic weights for each of the nested 

intervals is then calculated from the derived weights as: 

�
∈

=
jCx

jCmx )()(π          (3-33) 

Once nested intervals and the corresponding weights are derived, a possibility 

distribution is simply a trace over the intervals.  Nesting of intervals as such is applicable 

when it has been determined that the data obtained is assumed to represent a single 

unknown quantity and the data converges to a true value.  Even in cases where data is 

truly variable (as in variation in population characteristics) clustering techniques along 
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with possibility theory allow grouping of data to find possible values of the unknown 

quantities and thus offering significant benefits in data analysis at the explorative as well 

as advanced stages.  

 

3.2.3.1.1 Outline of the Procedure 

The general procedure for deriving a possibility distribution from point estimates thus 

includes: 

1. Order the data and determine a measure of central tendency measure such as a 

geometric or an arithmetic mean or median. Since possibility distributions are 

inherently unimodal this measure determines the most possible interval. 

2. Determine the weights of the original estimates, )( ixw . The weights can be 

determined from the empirical data using conventional frequency analysis or any 

other appropriate method. These weights reflect the amount of evidence that is 

focused on singletons. 

3. Calculate the distances using Equation 3-30 and organize data such that the data is 

sorted in the increasing order of the distance. 

4. Determine the consonant intervals by aggregating observations that are least 

expensive (smallest difference in costs). 

 

3.2.3.1.2 Example  

Let the sample space consist of eight unique observations, { }1,1.5,2.5,1.4 ,2 ,3 ,5 ,4=X . 

From the analysis of the data it can be seen that the anchor determined as the mean of the 
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data is, cx =3.68. Let the weight assigned to each observation be determined using 

Equation 3-26. Using the mean value as the anchor and applying the Euclidean distance 

metric the distances calculated are shown in Table 3-6.  From the results of Table 3-6, a 

graph as determined using the cost function is constructed as shown in Figure 3-8.  The 

nodes are connected to the other appropriate nodes such that points with the least cost 

function are combined together.  

Table 3-6: Sample singleton measurements and corresponding weights and the 
distance 

Observation, x Weights δ 1 
4 

4.1 
3 
5 

5.1 
5.2 
2 
1 

1/8 
1/8 
1/8 
1/8 
1/8 
1/8 
1/8 
1/8 

0.32 
0.42 
0.68 
1.32 
1.42 
1.52 
1.68 
2.68 

1Distance as determined from Equation 3-30 
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2 1 

 

Figure 3-8: Dendrogram indicating the similarities between the measurements from 
Table 3-6. 

Now, based on the distances in Table 3-6 and using Equation 3-30 and Equation 3-31, 

clusters are identified as: 

]1.4,4[1 =C , ]1.4,3[2 =C , ]2.5,2[3 =C , ]2.5,1[4 =C . 

Finally, referring to Equation 3-32, the vector of weights for the nested intervals is: 

{ }8/1 ,2/1 ,8/1 ,8/2)( =Cw  

Using these weights a possibility distribution is derived using Equation 3-33 and is 

shown in Figure 3-9. 
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1/8 

5/8 
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1 
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Figure 3-9: Possibility distribution depicting the possibilistic weights assigned to 
nested intervals. 

 

3.2.3.2 Developing Possibility Distributions from Disjoint Measurements 

 When measurements are completely disjoint intervals as shown in Figure 3-10, a 

possibility distribution can be determined using principles similar to point estimates. 

Disjoint intervals pose the same challenge as for point estimates where each measurement 

is disjoint and no common interval can be determined.  As explained in Section 3.2.3.1, 

clustering techniques offer mechanisms for deriving possibility distributions from such 

forms of measurements.  Unlike point estimates however, intervals are considered to be 

two-dimensional in that two attributes are required to define a single interval.  Hence 

when disjoint intervals are clustered, the distance and cost functions are based on a two-

dimensional analysis.  
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Figure 3-10: A graphical depiction of disjoint measurements. 

Given M observations that are disjoint intervals, 

],[ 111
ul xxO = , ],[ 222

ul xxO = , ……., ],[ M
u

M
l

M xxO = ,  

such that, ∅=∩∀ jiji OOOO  , , , weights assigned to each interval can be derived from 

conventional counting techniques as: 

( )
M
On

Ow i
i

)(
=         (3-34) 

where )( iOn is the number of times the measurement iO has occurred. 

The two bounds formed by the min on all the lower bounds of the intervals and the max 

of all the upper bounds include the entire set of measurements. Therefore, the support for 

the distribution can be determined as, [ ])(max),(min u

Fx

l

Fx
xxS

∈∈
= , where lx  and ux  are the 

lower and upper bounds of the measurements respectively.  An anchor (see Section 

3.2.3.1 for a general description of an anchor) can be calculated from the collection of 
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measurements as a measure of central tendency: 

�
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a ).....[

,
).....[ 2121    (3-35) 

The anchor determined from Equation 3-35, similar to that derived for point estimates, 

differs from the central tendency measures used in probabilistic analysis in that this 

measure is merely an approximate interval in which the most possible value would lie 

and not a parameter of a distribution. The distance metric that defines the distance 

between each measurement is then calculated from the anchor using the Euclidean norm 

and is given as: 

( )
2/12

1

2

2),( �
�

�
�
�

� −= �
=d

d
a

d
a xxXOδ       (3-36) 

The delta in the above function indicates that the distance is a sum of the distances 

between each attribute d, of the measurement O, and the anchor aX .  Once the distance 

metric is computed, the measurements can then be arranged in a sequence of increasing 

distances such that the measurements with the least distances are adjacent to each other. 

Eventually this measurement ordering is used to determine the cost function between 

adjacent intervals as: 

( )22 ),(,),(min a
j

a
i XOXO δδ=∆       (3-37) 

The cost function given in Equation 3-37 determines the aggregation of the intervals such 

that the intervals with the least cost are aggregated together and the resulting new 

consonant intervals are determined as, 
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( ) ( )[ ]New
uu

New
ll

i OxxOxxC ∈∈= max,min ,     (3-38) 

where, NewO  is the interval determined as the union of all the intervals that are 

aggregated. Once all the QH consonant intervals are determined as above, the weights and 

possibilities assigned to each interval are calculated similar to Equation 3-32 as: 

( ) ��
+∈∈

−=
1

)()(
iiii CO

i
CO

ii OwOwCm       (3-39) 

And finally the possibilistic weights are as defined in Equation 3-33, and are given as,  

�
∈

=
JCx

jCmx )()(π           

As can be seen from the above set of equations, disjoint intervals are a generalization of 

the point estimates. 

3.2.3.2.1 Outline of the Procedure 

1. Calculate the initial weights of each measurement according to Equation 3-34. 

2. Determine a suitable anchor to approximately determine the most possible value. 

A simple anchor based on the central tendency measure as shown in Equation 3-

35 can be used in most cases. 

3. Order the measurements according to the distances as calculated using Equation 

3-36 such that the interval that holds the highest possible value is on the top. This 

ordering will help determine the proximity of measurements to the most possible 

value and aid in the aggregation of the measurements. 
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4. Calculate the cost functions between each measurement and aggregate the 

measurements with the least cost function and determine the interval endpoints as 

given in Equation 3-38. 

5. Compute the final weights of each interval and the possibilistic weights according 

to Equation 3-39 and Equation 3-33. 

3.2.3.2.2 Example 

 Let the observations from a measuring device be given as, ]2,1[1 =O , 

]10,7[2 =O , ]5,3[3 =O , ]14,11[4 =O , ]7,6[5 =O  (Figure 3-11). The weights assigned to 

each interval and the distance metrics as calculated from the anchor are shown in Table 

3-7, where the anchor as calculated from Equation 3-35 is, ]6.7,6.5[=aX .  

 

Figure 3-11: Graphical depiction of disjoint intervals for Example 3.2.3.2.2. 

 

 

 

�  

1�

 
2� 3� 5� 6� 7�

   
10�

 
11�

  
14� x� 

 
 
 

O1 O3 
O2 

O4 

O5 



 

97 
 

 

Table 3-7: Weights and distance metrics for Example 3.2.3.2.2 

Measurement Value Weight Distance 
metric 

δ  

1O  [1,2] 0.20 7.25 

2O  [7,10] 0.20 2.78 

3O  [3,5] 0.20 3.68 

4O  [11,14] 0.20 8.37 

5O  [6,7] 0.20 0.72 

 

Arranging the measurements in the increasing order of the distance measure yields the 

following order: 5O > 2O > 3O > 1O > 4O  and Figure 3-12 shows the aggregation of the 

measurements resulting from the application of the cost function. 

 

O5 O3 O2 O4 O1 

 

Figure 3-12: A graphical depiction of the nested intervals for Example 3.2.3.2.2. 

The nested intervals are calculated from Equation 3-38 as:  

[ ]7,61 =C , [ ]10,62 =C , ]10,3[3 =C  and, ]14,1[4 =C . And the corresponding weights of 

the nested intervals as determined from Equation 3-39 are, 2.01 =w , 2.02 =w , 2.03 =w  
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and, 4.04 =w . Resulting possibilistic weights are simply a summation of these weights 

and are shown in Figure 3-13. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 x 

0.4 

0.6 

0.8 

1.0 
π 

 

Figure 3-13: Possibility distribution function for the final nested intervals extracted 
from disjoint measurements. 

 

3.3 Propagation of Possibility distributions 

Though the development of possibility distributions as described in the previous 

section is crucial, the exercise is futile without the sound framework of using them.  The 

fundamental concepts of possibility theory mixed with fuzzy logic, fuzzy arithmetic and 

interval analysis provide a rich and flexible framework for using possibility distributions 

in a number of unique situations where data is severely lacking or is ambiguous [Dubois 

and Prade, 1988].  Much the same way as the use of a probability distributions differs 

according to the context in which they are used, possibility distributions are to be used 

according to the uncertainty they are to represent.  Possibility distributions are used to 
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represent uncertainty in parameters that are part of a model or as stand-alone distributions 

from which decisions are made.  For example, a possibility distribution that represents 

the possible values of contaminant concentration at a specific location L can be used to 

determine the risks from exposure to the contaminant by including the distribution of the 

contaminant in a risk assessment model or it can be used to determine the possible values 

of the contaminant concentration to aid in decision-making models that determine if 

remediation is necessary.  Given a possibility distribution, an analyst might be interested 

in answering the following questions: 

• What are the possible concentrations of agent A at location L? 

• What are the possible risks from exposure to agent A? 

• If the concentration is beyond the regulatory limit what are the possible costs of 

implementing various remedial alternatives? 

• What is the possibility of component C failing? 

• What is the possibility of system S failing? 

Literature in the field of fuzzy logic is sprinkled with answers to the above 

questions where the distributions are considered to be fuzzy membership functions.  The 

underlying similarity of axioms of fuzzy logic to those of possibility theory makes the use 

of possibility distributions in similar situations a natural extension.  Answers to the first 

two questions can be classified as falling under the domain of human health risk 

assessments, the answer to the third question is usually addressed by risk managers while 

the answers to the last two questions are addressed in the field of reliability of systems.  

In reliability analysis, where fault trees and event trees determine the failure 
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sequence of events, the component failure rates represented as possibility distributions 

are combined at various levels using T-norms and co-norms [Dubois and Prade, Gupta 

and Qi, 1991].  See also Lucero [1999] for more on use of T-norms and co-norms in fault 

trees. These are logical combinations that are used to calculate the union, intersection and 

complement of two or more possibility distributions.  The most common norm used is 

Zadeh’s min and max norms, where min determines the intersection of two or more fuzzy 

membership functions and max determines the union.  These are analogous to the product 

and sum norms used to determine the intersection and union of probability measures. As 

opposed to the logical combination, functional propagation of possibility distribution 

involves the use of fuzzy arithmetic and interval analysis.  Methods to propagate 

possibility distributions in either setting are well developed [Ross 1995] and some have 

been summarized in Chapter 2 of this dissertation.  Since possibility distributions are 

functions defined on intervals, interval analysis is considered be a preferred approach for 

functionally propagating the distributions.  

Possibility distributions in the form developed here can also be used in modeling 

knowledge-based systems where the outputs are related to the inputs by an unknown 

function and are effectively represented as fuzzy “If-Then” rules.  For example, when the 

relation between the magnitude and the effect of exposure to a chemical X is only known 

partially, “If-Then” rules can be formulated to form a knowledge-base that includes all 

the measured concentrations as premises and the observed outcomes of effects as the 

consequences.  Once such a knowledge-based system has been established specific rules 

can be fired according to the value of a premise.  An actual application of a rule-based 
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system for fuzzy membership functions has been applied in soil infiltration models 

[Bardossy and Disse, 1993]. 



 

 

 

 

 

 

 

 

Chapter 4 From Theory to Practice 

The purpose of this Chapter is to illustrate the application of methods developed in 

Chapter 3 to data extracted from the risk analysis literature. 

 

Risk assessments are made up of parameters that are seldom known precisely and 

the evidence that is available to support specific values for these parameters is usually 

incomplete. There is extensive data available in specific areas of risk assessment (such as 

dose-response assessment and structural information for specific chemicals); however 

owing to their highly multi-disciplinary nature, risk assessments are prone to including 

variables that are incompletely known.  Even in cases where there is ample information 

for deriving uncertainty parameters, the final outcome can be ambiguous as the 

experiment itself is sometimes interposed with noise or is accompanied by human 

judgments. The level of noise and amount of subjective human inputs into the models 

usually varies according to the complexity and availability of information and its effect is 

seldom known with precision.  For example, when determining the effects of chemicals 

on human health, values of exposure concentration derived from fate and transport 

models are only approximate.  Moreover, the fate and transport models are combined 



 

103 
 

 

with data from dose-response models, and both of these types of models are only as 

thorough as the knowledge about system they represent.   

In such cases it is more judicious to combine what is known from tests (precise 

values determined from testing a few samples that are representative of the system) with 

what is not known about the heterogeneity of the system and the model (inherent 

uncertainty in the system and model).  As introduced in Chapter 2, previous uncertainty 

methods used to model uncertainty in risk assessments are limited by their scope and do 

not offer a scheme that allows for a natural representation of all forms of uncertainty.   

An efficient solution to modeling uncertainty might be to blend probability theory with 

other theories so risk analysts have all the tools at their disposal when conducting risk 

assessments.   Such an approach is proposed here in this dissertation. 

 

4.1 Case Study: Risks from Exposure to Residential Radon 

Radon is an odorless, tasteless, invisible radioactive gas that is prevalent in air, 

soils, and many residential buildings. Radon (chemical symbol Rn) is a naturally 

occurring radioactive gas found in soils, rock, and water throughout the U.S.   It has 

numerous different isotopes, but radon-220, and -222 are the most common.  Radon-222 

is the decay product of radium-226. Radon-222 and its parent, radium-226, are part of the 

long decay chain for uranium-238. Since uranium is essentially ubiquitous in the earth's 

crust, radium-226 and radon-222 are present in almost all rock, soil, and water.  Radon 

causes lung cancer, and is a threat to health because it tends to collect in homes, 

sometimes to very high concentrations.  As a result, radon is the largest source of 
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exposure to naturally occurring radiation.  It has been determined that exposures to 

sizeable concentrations of radon can result in a significant increase in lung cancers in 

humans [EPA, 2002].   

Indoor radon gas exposure is one of the leading causes of lung cancer in the 

United States.  In some areas of the country, as many as one out of two homes has high 

levels of radon.  Radon levels can soar during the colder months when residents keep 

windows and doors closed and spend more time indoors.  Levels of radon gas in the air 

that are considered by the EPA to be a cause for concern are 4 pico Curies per liter 

(pCi/L) or higher.  Hence, the study of radon gas in human health risk assessment is an 

important problem. 

The incidence of higher rates of lung cancers in uranium miners and the presence 

of high concentrations of radon gas in mines has resulted in numerous epidemiological 

studies to determine the effects of radon exposure to human health.  These miner studies 

demonstrated a significant relationship between radon and lung cancers [Lubin et al., 

1994].  It is now estimated that indoor radon can cause anywhere between 15,000 to 

22,000 lung cancer deaths annually in the US [EPA, 2002].  Extrapolation of results from 

miner studies to those that are commonly prevalent in residential settings resulted in EPA 

regulating radon at concentrations of 4 pCi/L (1 curie being equivalent to the quantity of 

radioactive material yielding 3.7 x 1010 disintegrations per second).  Though it is 

established that increased exposures to radon causes cancer, the direct extrapolation of 

data from miners to residential population has been questionable due to the differences in 

the characteristics between the miners and the general population and differences in the 

environmental conditions in the mines and in the residential buildings.  These differences 
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prompted further epidemiological studies that studied the effects of radon exposures on 

human populations in residential settings.  Over the past decade many studies were 

conducted in various parts of the world [Field, 2001].  Each of these studies has 

determined a link between radon exposure and lung cancer, however, the intensity of the 

effect has varied from study to study [Lubin and Boice, 1997; Field, 2001].   

In the following case studies we explore the application of possibility 

distributions to model uncertainties in individual epidemiological studies and we also 

explore the use of possibility theory in a meta-analysis study as conducted by Lubin and 

Boice [1997], and in a risk study conducted by Field et al. [2002].   

 

4.1.1 Deriving Possibility Distributions from Meta-Analysis of Pooled Studies 

When faced with a limited amount of data, and the constraints of time to collect 

further data, one of the effective methods of data analysis is to identify data from multiple 

studies and pool them to extract more informative patterns.  Such analysis of data from 

multiple studies is sometimes referred to as meta-analysis and is especially useful in areas 

such as epidemiological and environmental studies wherein data are hard to acquire and a 

single study scarcely presents any conclusive evidence. Meta-analysis has been defined 

as the “statistical analysis of a large collection of results from individual literature for the 

purpose of integrating the findings” [Glass, 1976].  There are a number of methods 

available to conduct meta-analysis and more details are presented elsewhere [Thacker, 

1990].  Meta-analysis of pooled data is conventionally accomplished using a combination 

of statistical analysis, regression methods, and likelihood models.  This form of statistical 
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pooling works well when the uncertainties underlying each study have been confidently 

tackled and each study presents a precise value to the pooling model.   

However, due to the inherent nature of epidemiological studies such precise 

estimates are seldom identified in each study.  The nature of the results depends on the 

uncertainty analysis model used within each study, and can be ambiguous, vague and/or 

non-specific.  Another challenge of conducting meta-analysis on studies extracted from 

literature is that there is usually inter-study and intra-study variability due to factors that 

are usually not identified by the studies and therefore are not reflected in the final 

estimates published.  Finally, as meta-analysis is performed on controlled studies the 

nature of variation in the estimates between studies is non-random.   Due to these 

reasons, meta-analysis studies could benefit from uncertainty models that are more 

amenable to summarization of the data in weaker terms (such that measures do not 

necessarily add to 1.0) and more natural (consistent with human thought process) in the 

data representation.  This case study attempts to exemplify the usefulness of possibility 

theory to meta-analysis.  Generation of possibility distributions as discussed in the earlier 

chapters allows one to systematically uncover relevant empirical information and to 

naturally represent the uncertainty in the entire range of data as derived in the original 

studies.  

To illustrate the possibilistic model’s application, a meta-analysis study conducted 

by Lubin and Boice [1997] was used.  In their study, Lubin and Boice pool lung cancer 

data from eight residential radon gas exposure studies.  The goal of the study was to 

estimate the relative risk values and their corresponding 95% confidence intervals (CI) 

from the pooled studies.  Relative risk estimates were determined by fitting a log-linear 
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model to each of the original 8 studies (See Appendix A for the fitted curves): 

( )[ ] )(,log oo xxxxRR −= β         (4-1) 

In Equation 4-1, x is the exposure dose, ox is the referent category and β is the 

slope of the exposure-response curve.  The choice of the model and its derivation are 

explained elsewhere [Lubin and Boice, 1997] and it is sufficient for this case study to 

understand the basic definitions of relative risk (RR) and slope factor ( β ).  Relative risk 

is defined as the ratio of the risk rates in those exposed to the stressor to those unexposed 

and determines the excess risks from exposure to the hazard.  The factor β is used to 

relate the relative risks to exposures and determines the rate of increase in relative risk for 

a unit change in the exposure concentrations.  In a typical radon epidemiological study, 

relative risks or odds ratio are calculated from very few categories of exposure 

concentrations, with the first category usually referred to as the “referent category”.  In 

most cases such few sampling categories is not sufficient to determine the slope factor 

accurately, and this is especially true for radon studies where there is weak association 

between the dependent (response) and the independent (exposure) variable.  The utility of 

a meta-analysis study is to determine the exposure-response factor ( β ) from a collection 

of studies so that the pooled studies can extract stronger statistics.   

In their meta-analysis study Lubin and Boice determine β  by first calculating 

estimates iβ , 8,....,1=i  for each study by fitting Equation 4-1 to the estimates in each 

individual study and then obtain the overall β  as the mean value of the probability 

distribution formed by iβ .  The underlying probability distribution is assumed to be a 
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normal distribution.  In our case study, we do not need to assume any distribution on iβ s, 

nor to derive a possibility distribution of the relative risk estimates calculated using 

individual iβ .  Rather, the concepts of possibility theory allow for the interpretation of 

the state of uncertainty related to the variable under study.  The variable considered in 

this case study is the relative risk and a possibility distribution is derived for the 95% 

confidence intervals of the relative risks determined using the iβ s from each study (these 

are shown in Table 4-1).  The 95% confidence interval is assumed to reflect the 

variability of the data within a study, and the range of the interval is considered to 

represent the ambiguity of the expert in picking any one value for the relative risk.   

Since the possibilistic meta-analysis does not necessarily assume inter-study 

randomness, the randomness that is inherent in the 95% confidence interval estimates of 

each study is transferred into a possibility distribution.   Therefore, in addition to 

randomness, ambiguity is also represented.  The resulting distribution can be assumed to 

represent second-order uncertainties, where, now a possibility distribution represents the 

ambiguity in the 95% confidence interval values of relative risks.  We also illustrate how 

possibility distributions can be generated to represent the ambiguity in the relative risk 

values arising from point estimates where the ambiguity is not presented in the 

measurements themselves but is, that which occurs due to lack of data to accurately 

portray uncertainty as that which is only due to randomness.  

4.1.1.1 Deriving Possibility Distribution from the 95% Confidence Intervals 

 Due to a lack of complete data from the original studies used by Lubin and 

Boice, data from their tables are used without any modifications. Table 4-1 shows these 
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values.  

Table 4-1: Estimates of Relative Risk at 150 Bq/m3 and 95% confidence intervals 
for each study and for all the studies combined (Lubin and Boice, 1994) 

Study Relative Risk 95% CI 
Finland – I (F-I) 1.3 1.09-1.55 
Finland-II (F-II) 1.01 0.94-1.09 
New Jersey (NJ) 1.83 1.15-2.90 
Shenyang (Sh) 0.84 0.78-0.91 
Winnipeg (Wpg) 0.96 0.86-1.08 
Stockholm (Shlm) 1.83 1.34-2.50 
Sweden (Swe) 1.20 1.13-1.27 
Missouri (MO) 1.12 0.92-1.36 
Combined 1.14 1.01-1.30 

 

Assigning weights to each study 

 Each of the studies is assumed to be equally accurate and hence equal 

weights are assigned to each one. These weights represent the evidence available to 

support the statement that the relative risk values are between the ranges indicated by the 

interval.  In reality, some studies can be more extensive than others or the characteristics 

of the study can resemble the intent of the meta-analysis more closely and in such cases 

the weights can be adjusted to reflect the confidence of the analyst in the study.  Lubin 

and Boice assign weights to each study by using a parametric approach prescribed in the 

literature [Whitehead and Whitehead, 1991] where the asymptotic variance in the study 

defines the value of the weight. 

Derivation of most possible interval 

 Determining the consonant intervals by taking the intersections of the original set-

valued observations is accomplished according to the procedure outlined in Chapter 3. 

The support set that includes all the possible values from for all the studies is given as, S 
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= [0.78, 2.9] and the average of the newly formed intervals is [1.08, 1.44].   Figure 4-2 

shows all the intersections along with the support set and the average interval. 

Intersecting intervals derived from all the intervals as shown in Figure 4-1 are tabulated 

in Table 4-3 along with the normalized weights.  The columns labeled “lower” and 

“upper” represent the lower and upper bounds of the new interval, respectively.  The 

Min-Max row represents the support of the possibility distribution and represents the set 

derived from the union of all the focal elements.  The weight assigned to this interval is 

optimistically taken as the minimum of all the weights by assuming that at least one of 

the values in the support has to be least possible when compared with the most possible 

value (most possible value being the value with complete possibility). 

Table 4-2: Weights assigned to each study’s interval based on the assumption that 
the studies are equally reliable 

Study ID Interval* Weights 
F-I 
F-II 
NJ 
Sh 
Wpg 
Shlm 
Swe 
MO 

[1.0900, 1.5500]�
[0.9400, 1.0900]�
[1.1500, 2.9000]�
[0.7800, 0.9100]�
[0.8600, 1.0800]�
[1.3400, 2.5000]�
[1.1300, 1.2700]�
[0.9200, 1.3600] 

0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 

*Intervals based on 95% CI estimates, however subjective and objective interval derived from other criteria 
can be readily used  
 
The resulting intervals (Figure 4-2) are then analyzed for consonance by choosing the 

interval set that could contain the most possible values. Other methods such as entropy 

measures and plausibility traces [Chavez, 2002] are appropriate when the number of 

intervals is very limited, however, the mean value is considered to be intuitive and 

effective in determining consonance in most cases.  In addition, an expert’s knowledge 
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can also be used to determine the initial anchor.  The intent of this dissertation is, 

however, to develop purely empirical distributions and hence strictly quantitative 

measures such as the mean value were employed.   

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

F-I

F-II

NJ

Sh

Wpg

Shlm

Swe

MO

95% CI Relative Risk
 

Figure 4-1: 95% confidence intervals on relative risks at exposure levels of 150 
Bq/m3 (1 pCi/L = 37 Bq/m3). 

Conceptually, the meaning of the anchor that determines the most possible 

interval differs from the meaning of the mean values that define a probability distribution, 

in that the latter is based on the assumption of randomness and the stricter axioms of 

probability theory while the former does not assume any randomness and supports a 

weaker axiom of possibility theory that the possible value lies within some range of 

values.  Hence, the interval of [1.08, 1.44] is simply asserting that the relative risk value 

can lie somewhere between the values 1.08 and 1.44.  This is a weaker claim than 

indicating that the values between 1.08 and 1.44 are known to occur in 50% of the cases, 
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i.e., ( ) 5.044.108.1 =≤≤ XP  and that 5.01)( =−=¬ pXP .   

Table 4-3: Intervals obtained by intersection of the original set of observations 

� Lower� Upper� Wt1
�

Normalized 
Wt�

1� 1.34� 2.50� 0.13� 0.05�
2� 1.34� 1.55� 0.13� 0.05�
3� 1.34� 1.36� 0.13� 0.05�
4� 1.15� 2.90� 0.13� 0.05�
5� 1.15� 1.55� 0.13� 0.05�
6� 1.15� 1.36� 0.13� 0.05�
7� 1.15� 1.27� 0.13� 0.05�
8� 1.13� 1.27� 0.13� 0.05�
9� 1.09� 1.55� 0.13� 0.05�
10� 1.09� 1.36� 0.13� 0.05�
11� 1.01� 1.30� 0.13� 0.05�
12� 0.94� 1.09� 0.13� 0.05�
13� 0.94� 1.08� 0.13� 0.05�
14� 0.92� 1.36� 0.13� 0.05�
15� 0.92� 1.08� 0.13� 0.05�
16� 0.86� 1.08� 0.13� 0.05�
17� 0.86� 0.91� 0.13� 0.05�
18� 0.78� 0.91� 0.13� 0.05�
Min-Max� 0.78� 2.90� 0.13� 0.05�
Average� 1.08� 1.44� � �

� � Sum� 2.38� 1.00�
� �    

1Weights for each intersecting interval are determined by 
applying the min norm across the weights of the original 
intervals. 

 
Rather than asserting such precise statements defined by crisp boundaries, a risk analyst 

might prefer to assert their confidence in varying ranges of values that converge to the 

most possible value.  Therefore, the mean value in the possibilistic model is an assertion 

that the most possible value lies in an interval that is closest to the mean and no other 

precision is assumed. Lack of precise statements in this case is not a reflection of 

inaccuracy but merely a reflection of the realities of the data.  
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 In the case study, using this mean-value technique resulted in consonant intervals 

shown in Table 4-4.  An inspection of the consonant intervals reveals that the weights 

assigned to each interval reflects the number of observed values that are known to occur 

within each interval. Hence, though the most possible relative risk values are between 

1.15 and 1.27, the weight of 0.13 assigned to this interval reflects the actual weight an 

analyst is comfortable in assigning only to this interval and to no other interval, and 

similarly the weight assigned to interval [0.78, 2.9] is 0.45 indicating that the evidence 

strongly supports just this interval and no other interval.  As seen from Figure 4-2, the 

higher the number of original intervals included within a derived consonant interval the 

higher is the weight assigned to it.  

 

Discussion 

A comparison of the possibility distribution and the 95% confidence interval 

obtained by Lubin and Boice is shown in Figure 4-3.  Lubin and Boice assume that the 

exposure-response parameter, β , varies randomly between the studies and the 

contribution of each β  to the overall estimate is weighted by a weight equal to the 

inverse of the variance within each study.   
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95% CI Relative Risks - Intersecting Intervals
 

Figure 4-2:  Intersecting intervals from the original set of intervals.  A set that is the 
union of all the intervals A=[0.78,2.9] forms the support of the distribution and the 
average of all intervals (Average = [1.08, 1.44]) is used as the anchor for determining 
the most possible interval. 

Table 4-4: Redistribution of weights from the non-consonant intervals to the 
consonant intervals 

 Consonant 
Intervals 

Wt.1 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 Final 

Wts. 
  Redistribution weights           

1 [1.15, 1.27] 0.05 0.00 0.00 0.23 0.27 0.31 0.26 0.00 0.00 0.34 0.00 0.00 0.00 0.00 0.00 0.13 

2 [1.13, 1.27] 0.05 0.00 0.00 0.20 0.23 0.27 0.26 0.00 0.00 0.32 0.00 0.00 0.00 0.00 0.00 0.12 

3 [1.09, 1.36] 0.05 0.05 0.12 0.18 0.21 0.24 0.28 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.55 0.15 

4 [1.09, 1.55] 0.05 0.15 0.72 0.20 0.24 0.14 0.16 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.14 0.15 

5 [0.78, 2.90] 0.05 0.81 0.16 0.19 0.05 0.03 0.04 1.00 1.00 0.04 1.00 1.00 1.00 1.00 0.31 0.45 

 1Weights on the consonant intervals 
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In deriving the possibility distribution, however, no randomness or weighting is 

assumed (however this could be very easily included by varying the weighting factor) but 

rather, the 95% confidence intervals from each study are considered without any 

modifications. Hence the possibility distribution, in addition to extracting the most 

possible values, also represents the entire variation in the possible relative risk values. 

Lubin and Boice’s estimates show that the resulting 95% confidence intervals for relative 

risks are [1.01, 1.30].  Due to the difference in the actual weights given to each study, the 

final estimates may vary numerically, however, the intent of the comparison is not to 

highlight the accuracy of the estimates, but to point out the difference in the meaning of 

the values derived from possibilistic and probabilistic analysis. By the definition of a 

95% confidence interval based on the classical interpretation of probability, this suggests 

that the interval [1.01, 1.30] is just one of the intervals in a large number of repeatable 

studies that can contain the true value.  Therefore, a 95% confidence interval in this case 

does not reveal much but to mathematically reduce the range of true values. Given the 

data in Table 4-1 and given that the variability within studies is large, how confidently 

can an analyst now answer the question, with what confidence can you advise that the 

true value of relative risk is within this smaller range of [1.01, 1.30]? The answer would 

probably be something other than 95%.  An analyst in this case might be more 

comfortable in giving answers that are weaker or are more vague and ambiguous.  The 

possibility distribution curve shown in Figure 4-3 offers a more realistic picture of the 

variability in the studies and offers an analyst a wider range of choices.   
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Figure 4-3:Possible relative risk values from the meta-analysis of eight case-control 
lung cancer residential radon exposure studies. 

The same question posed to an analyst equipped with the possibility distribution can now 

be answered in a slightly different manner. If the question is, “with what confidence can 

you predict that the relative risk will lie between [1.01, 1.30]?”, then the answer would be 

25%.  This response is a result of determining the certainty that the value will lie in the 

interval.  The certainty value is determined through the concept of a necessity measure as 

defined in the previous chapter.  Necessity is the dual of possibility and is defined by 

Equation 3-8 as )x)x(1inf()( Α∉−=ΑΝ π , and it determines the degree to which one 

fails to doubt the occurrence of A = [1.01, 1.30].  It can alternatively be expressed as, 

)(1)( ΑΠ−=ΑΝ .  Therefore, given this equation and referring to Figure 4.3, 

25.075.01)( =−=ΑΝ .  The dotted line in Figure 4.3 shows the region where events 

other than A are possible and hence the negation of this value indicates the evidence that 

completely supports A.  Thus the certainty with which it is known that A will occur is 
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0.25 while the possibility it won’t occur is 0.75 or, alternatively, it is completely possible 

that the event can occur.   

It can also be seen from Figure 4.3, that an event is only certain to occur 

( 0)( >ΑΝ ) when it is completely possible 1)( =ΑΠ . This indicates that an analyst is 

only certain about the event occurring only if evidence completely confirms its 

occurrence.  Therefore, a necessity value can also be considered the degree of 

confirmation when the value is completely possible.  By providing these two dual 

measures, possibility theory enables an analyst to offer more realistic analysis of the 

uncertainty.  

 

4.1.1.2 Deriving possibilistic curve from considering point estimates of the study 

Possibility distribution for point estimates is derived using the second column of 

Table 4-1. Results of the analysis are shown in Table 4-5 and Figures 4-4 and 4-5.  The 

values considered for point estimates are the relative risk values that were determined 

using the relative risk model given by Equation 4.1. Once again equal weights were 

assigned to each study by assuming that the studies were equally reliable.  An anchor 

value of 1.26 was determined by taking the mean of the relative risk estimates from all 

the studies.  The hierarchy of aggregation of the relative risk estimates as determined 

from the distance to this anchor is shown in Figure 4-4.  The cost function as given by 

Equation 3-28 is used to select the most optimum points to aggregate.  Bold lines in 

Figure 4-4 show the most appropriate order of aggregation. Table 4-6 shows the resulting 

nested intervals along with the interval weights and the possibilistic weights as 

determined by Equations 3-32 and 3-33.  A possibilistic curve for the nested intervals 
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shows that the relative risk values with highest possibility lie between 1.2 and 1.3 

indicating that it is very likely that radon is a carcinogen at an exposure concentration of 

150 Bq/m3 (since the relative risk value is greater than 1), with relative risk values of 1.83 

also possible (Figure 4-5). 

Table 4-5: Relative risk values and the distance between the point estimates 
determined from each radon lung cancer study [Lubin and Boice, 1994] 

Study Relative Risk )( ixm  δ  

Finland – I (F-I) 1.3 1/8 0.04 
Finland-II (F-II) 1.01 1/8 0.25 
New Jersey (NJ) 1.83 1/8 0.57 
Shenyang (Sh) 0.84 1/8 0.42 
Winnipeg (Wpg) 0.96 1/8 0.30 
Stockholm (Shlm) 1.83 1/8 0.57 
Sweden (Swe) 1.20 1/8 0.06 
Missouri (MO) 1.12 1/8 0.14 

 

 

 

1.3 1.2 1.12 1.01 .96 .84 

δ 

x 

1.83 

 

Figure 4-4: Nested interval structure of the relative risk point estimates. 
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Table 4-6: Final possibilistic weights determined from the nested intervals as shown 
in Figure 4-4 

Interval ( )iC  Weight )( iCw  Possibilistic weights )( iCπ  

[1.2, 1.3] 0.25 1.0 

[1.12, 1.3] 0.125 0.75 

[0.96, 1.3] 0.25 0.625 

[0.84, 1.3] 0.125 0.375 

[0.84, 1.83] 0.25 0.25 

 

 

 

0.84 1.12 1.2 1.3 1.83 0.96 

π 

x 

0.25 

0.375 

0.625 

0.75 

1 

Combined point estimate (1.14) [Lubin and Boice, 1994] 

 

Figure 4-5: Possibility distribution derived from the relative risk point estimates.   
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In contrast, the point estimate value derived from Lubin and Boice [1994] shows 

that the excess risk is only 1.14.  The expected difference is obvious since the derived 

possibility distribution is based on the inclusion of all the values, while that of Lubin and 

Boice are based on a weighted combination of the β  from each study.  Our main 

contribution is however that the possibility distribution developed, even though it is 

based purely on data and no assumptions, resulted in values that were consistent with 

those that resulted from the work of Lubin and Boice.  The possibility distribution 

derived by considering the similarities of the values is more practical in a setting where 

the parameters of randomness are not known and the true variation within studies or the 

heterogeneity is suspect.   

In the original meta-analysis study, the estimates generated were based on the 

assumption of a normal distribution wherein the underlying evidence is assumed to be 

precise in not only the calculation of the parameters of the distribution but also in the 

calculation of the variance of the slope factor β .  As illustrated in Section 4.1.1.1, the 

possibility distribution constructed over the nested intervals also allows an analyst to 

make judgments at various levels of confidence without assuming any extra evidence.  In 

comparison to the point estimates derived by Lubin and Boice where the estimate is 1.14, 

the most possible values derived from the use of possibilistic modeling range between 1.2 

and 1.3, with a 25% possibility that the values could range between 0.84 and 1.83.   From 

a cursory glance of the data in Table 4-1, it is easy to see that the range is 0.84 and 1.83, 

however what makes the possibility distribution interesting is that one can quantify the 
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possibility of various values of risks.  For example, if one desires to know what the 

possibility of risks less than 1 is, the answer would be 62.5% (from Figure 4-5 where the 

interval along the abscissa is [0, 1.0]).  However, unlike probabilistic analysis this does 

not constrain an analyst to estimate the possibility of values to be outside this range to be 

37.5%.  The possibility of the values being outside this range is in fact 100% (because the 

most possible value lies in this range).   

Such calculations, in addition to allowing an analyst to judge the amount of 

ambiguity and vagueness in data, also helps compare risks for risk management 

decisions.  For example, suppose the risks from two hazards are available and 

possibilistic analysis of the available evidence shows that the possibility of risk being 

greater than 1.0 in both cases is 100%.  And, suppose that the possibility of risk being 

less than 1.0 is 60% in the first case and 65% in the second case, then it would be more 

prudent to work on reducing the risks from the first hazard.  In a complex risk assessment 

and management case, the number of variables involved is usually significantly higher 

and quantification of these variables in such forms allows one to conduct analysis even 

when data is limited and only vague estimates are available.   

In a more recent comprehensive radon study by the University of Iowa [Field, 

2002], the relative risks from exposure to residential radon ranged from 1.24 to 1.83.  

This range is beyond the 95% confidence interval range of Lubin and Boice study but 

within the range determined by possibilistic analysis.  Though it might have been 

coincidental that the range of actual values obtained from each original study of the meta-

analysis study is between 0.84 and 1.83, reporting the entire range of possible values 

through possibility distributions, presents a more comprehensive summary of the results 
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for subsequent comparisons.  This is especially more relevant when the data are very 

limited and there is no known scientific model that justifies precise relationships between 

dependent and independent variables.  Though probabilistic and possibilistic methods 

represent different concepts, this comparison is shown to indicate the utility of the 

possibility distribution in deriving representative values from sparse data. While 

complicated probabilistic models exist, it seems more natural (more compatible with 

human interpretation) to represent sparse data through possibilistic representations. By 

doing so, an analyst acknowledges the vagueness and ambiguity inherent in the data.  In 

conclusion, to quote the authors of the original meta-analysis study [Lubin and Boice, 

1997], 

 “Meta-analyses are valuable for identifying differences among studies and for summarizing 

results, but they should be interpreted cautiously when expected RRs are low as with indoor radon 

exposure, when there is study heterogeneity and where there is potential for confounding and exposure 

misclassification.”  

This further corroborates our proposition that possibilistic models offer viable 

alternatives to probabilistic models in analyzing meta-analysis data where information is 

limited and there is no suggested randomness between the studies.  In possibilistic models 

data can be used as it is provided (intervals or point estimates) and hence do not require 

any intermediate assumptions to generate an uncertainty distribution. 

 

4.1.2 Use of Possibility Distributions to Determine Exposure Concentrations in 

Epidemiological Studies 

The broad purpose of individual epidemiological studies is to determine an 
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association between exposure and effects.  The two types of epidemiological studies are 

ecologic and analytical case-control studies [National Academy Press, 1999], with the 

majority of the radon studies being case-control studies.  A general methodology for 

case-control epidemiological studies consists of collecting data directly from the lung 

cancer cases and controls through personal interviews and monitoring of radon 

concentrations. Radon concentrations are monitored within each room/floor of the 

subjects’ homes and their cumulative exposures over a period of 5-30 years prior to 

enrollment in the study are determined by extrapolating results of current exposures to 

past exposures.  Association between exposure and effects are usually determined by 

estimating the increase in odds of lung cancer incidence in cases when compared to those 

in controls. The rate at which these odds change with categorical exposure levels is 

predicted using regression models such as log-linear or linear regression models 

[National Academy Press, 1999].  A number of factors such as the inability to accurately 

measure radon concentrations from current and past residences, imprecise knowledge of 

mobility of the subjects, and unknown effects of confounding factors such as smoking, 

education, gender and age, contribute significantly to the uncertainties in the final result 

of the odds ratio.  

Rather than disputing the accuracy of any study, the purpose of our case study is 

to illustrate the application of possibility theory to represent uncertainties in exposure 

concentrations and to show the convergence of discrete possibility distributions to more 

continuous distributions with the availability of more data.  Through this case study we 

also show that possibility distributions need not be limited to only sparse data sets but can 

also be applied to larger data sets.  
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Data from the Iowa Radon Lung Cancer Study (IRLCS) [Field et al., 2000, 2002] 

are used to illustrate the application of our methods.  In the IRLCS study, lung cancer 

risks from smoking and radon exposure were studied in female residents who were 

diagnosed with lung cancer and the rates were compared to those female residents who 

were not diagnosed with cancer.  The categorical exposure variables used in the study 

were based on “working level month” exposures accumulated over the period of 5-19 

years prior to enrollment in the study.  A time window of 5-19 years was chosen based on 

the assumption of a 5-year latency period for cancer in similar studies on miners and a 

19-year limit was to ensure the availability of the subjects for the study and for follow-

ups [Field et al., 2000].  Among the many types of analysis conducted as part of the 

study, one was to determine the total cumulative exposures of radon.  These exposures 

were calculated from the accumulation of exposures from residential as well as other 

radon exposures and were calculated using Equation 4-2 as, 

�×
=

l
llyy cTWLM

100170
λ        (4-2) 

where, λ  is the assumed equilibrium ratio (assumed to be 0.5), lyT is the total time 

spent at location l in year y and lc  is the radon concentration at the location in pCi/L.  

The IRLCS study was extensive and included radon concentration data from multiple 

locations on all floors and rooms of various residential types.  In this case study, 

however, we restrict the calculations to the radon concentrations as measured on the first 

floor of a one-story building. Further, only radon concentrations from residential 

exposure are considered in our case study.  Total time spent at home and radon 
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concentrations data were available as point estimates only and more than 900 

concentration data points and more than 9000 mobility values were considered (result of 

data for each year of 15 years prior to enrollment).   

To construct reasonable possibility distributions, cutoff points were determined 

with respect to the distance from the anchor.  These cutoff points represent the cost 

functions determined by the data points that are most similar to each other.  For example, 

cutoff points for the fraction of time spent at home were 1 through 9 in unit increments 

and represent the cost associated with combining the measurements.  Each cutoff point 

forms an interval by including all values that are closest to the anchor, in other words, are 

most similar to the most possible value.  At a cutoff point all values that are within a 

distance of 1 unit are combined together and subsequently all those that are at a distance 

of 2 units from the anchor are combined together in the next interval and so forth.  The 

intervals derived from such agglomeration are shown in Table 4-7.  By progressing 

through all the cutoff points one can derive all the consonant intervals.  Weights are then 

assigned to each of the intervals by calculating the proportion of data points within each 

interval. Table 4-7 and Table 4-8 show the results obtained from this analysis, and Figure 

4-6 and Figure 4-7 show the nested intervals along with the possibilistic weights.  Once 

the possibility distributions for individual variables were determined, the exposures were 

then calculated using Equation 4-2.  Exposures were calculated by using interval analysis 

techniques on intervals of time spent at home and concentrations at five possibilistic 

levels of 1, 0.7, 0.4, 0.2 and 0.07.  For example, at the possibility level of 0.7,  

]60.0 ,24.0[]9.2 ,45.1[*]80.0 ,63.0[*
100*170

0.5
in WLM/yr Exposure == . 
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Other intervals at the corresponding possibilistic levels are calculated in a similar fashion.  

The resulting possibility distribution is shown in Table 4-9 and Figure 4-8.  

Table 4-7: Nested intervals derived for the fraction of time spent on the first floor of 
a one-story residential building in the IRLCS study 

Intervals Interval Weights Possibilistic Weights 
[0.67, 0.76] 0.21 1 
[0.63, 0.8] 0.22 0.79 
[0.59, 0.84] 0.21 0.57 
[0.51, 0.92] 0.16 0.35 
[0.47, 0.96] 0.12 0.2 
[0.42, 1] 0.05 0.07 
[0.38, 1] 0.01 0.02 
[0.35, 1] 0.01 0.01 
[0.08, 1] 0 0 
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  Figure 4-6: Possibility distribution for the fraction of time spent at on the first floor 
of one-story residential buildings in the IRLCS study.  
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Table 4-8: Nested intervals derived from the measurements of radon concentrations 
determined on the first floor of one-story residential buildings in IRLCS study 

Intervals Interval Weights Possibilistic Weights 
[1.95, 2.4] 0.13 1 
[1.7, 2.65] 0.14 0.87 
[1.45, 2.9] 0.18 0.73 
[1.17, 3.15] 0.11 0.55 
[0.95, 3.4] 0.14 0.44 
[0.67, 3.65] 0.11 0.3 
[0.43, 3.9] 0.13 0.19 
[0.3, 4.15] 0.04 0.07 
[0.3, 4.2] 0.03 0.03 
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Figure 4-7: Possibility distribution for measurements of radon concentrations 
determined on the first floor of one-story residential buildings in IRLCS study.  
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Table 4-9: Residential cumulative exposures as determined from the possibility 
distributions of radon concentrations and mobility values from Equation 4-1 

Exposure (WLM/yr) Possibilistic Weights 
[0.36, 0.47] 1 
[0.24, 0.60] 0.7 
[0.14, 0.74] 0.4 
[0.08, 0.9] 0.2 
[0.03, 1.07] 0.07 
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Figure 4-8: Possibility distribution of radon exposures in WLM/yr derived from 
individual possibility distributions of concentration and fraction of time spent on the 
first floor.  

The possibility distribution generated by the combination of individual possibility 

distributions was determined by applying interval analysis methods on intervals at five 

different possibility levels (see Section 2.3.3 for more on interval methods).  

4.2 Comparison of Results 

To compare the possibilistic values to those obtained through probabilistic 
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analysis, we calculated the mean and standard deviation from running 1000 Monte Carlo 

simulations (MCS) of the concentrations and time spent data from section 4.1.2.  Figure 

4-9 shows the results of the analysis.  A comparison of these values with those obtained 

by possibility methods indicates that the most possible value as expected is close to the 

mean obtained through MCS method (due to the calculation of the anchor as a statistical 

mean).  
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Figure 4-9: Radon exposures in WLM/yr as determined by Monte Carlo simulation 
with the fraction of time and concentrations expressed as probability distributions. 

 

When considering the occurrence of any event, possibility yields estimates that 

are dependent on how similar the event is to the most possible event.  For example, if one 

is to determine the probability of event “A” occurring, where “A” is the range of 

exposures between 0.2 and 0.3 WLM/yr, in probability theory this is calculated from the 

cumulative distribution function in Figure 4-9, as 17.026.043.0)3.02.0( =−=≤≤ XP . 



 

130 
 

 

In contrast, using the possibility distribution, the values are calculated from Figure 4-8 as, 

7.0)3.0,2.0( =Π .   The probability results indicate that the answer is not dependent on 

the most likely value, which in most cases is the mean value; on the other hand, the 

possibility results show that as one approaches the most likely value the possibility of it 

occurring increases.  This seems like a more intuitive answer since as one approaches the 

value that is most likely to occur their confidence in the range should increase, and this 

confidence would correspondingly decrease as they move away from the most likely 

value.  From Figure 4-8 it can also be seen that the intervals at various possibility values 

denote the certainty with which we are sure that the most possible value lies in that range.  

For example, the certainty that the value will be in the interval [0.12, 0.6] is calculated 

from Equation 3-8 as, )(AN = )(1 AΠ−   = 0.6.  Therefore, given the data, an expert is 

60% certain that the most possible value will be in the interval [0.12, 0.6].  

Thus using a possibilistic approach one automatically can deduce the bounds on 

the intervals at various levels of certainty.  In regular risk assessments or risk 

management studies, these values can then be propagated with ease using methods such 

as interval methods and aid the analyst in making decisions in the midst of ambiguity



 

 

 

 

 

Chapter 5 Conclusions 

 

Probabilistic techniques, either subjective or objective, handle uncertainty in 

system behavior by assuming that the evidence revealed by the system is specific and 

accurate enough to merit the generation of additive probability measures.  When 

however, the assumption of the specificity with which a system functions is based on 

evidence that really is imprecise, ambiguous or incomplete, then assuming a probabilistic 

model can lead to accepting values that are not necessarily true representations of the 

system.   In systems such as risk assessment, analysis of the sources of uncertainty 

reveals that randomness is only one type of uncertainty, and a more general uncertainty 

model is required to include all the types.  By relaxing the axiom of additivity, possibility 

theory offers a promising and general model to acknowledge and include ambiguity, 

ignorance and imprecision of evidence in uncertainty distributions.  The usefulness of 

possibility theory is especially crucial in areas where evidence is very limited and the 

measurements reveal information that is ambiguous and vague.  Measurements acquired 

about a variable of interest are usually not specific values and even if so, the 

measurements seldom represent complete evidence and the underlying uncertainty 

distribution is often unknown.  The vagueness or imprecision in the measurements can 
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result either from the characteristics of the measurements themselves or in what they 

infer.  In other words, when the measurements are intervals, as when the instrument 

(objective or subjective) is imprecise, the uncertainty arises due to the instrument 

imprecision itself, however, when the instrument is capable of producing precise 

measurements but the content of the measurements reveals ambiguity, the uncertainty is 

due to the data itself.  In either case, the distribution needs to quantitatively reflect the 

amount of imprecision and vagueness and possibility distributions offer a more natural 

representation of uncertainty.   

In this dissertation, we specifically focused on laying foundations for deriving 

possibility distributions from three types of imprecise empirical evidence structures:  

1. When evidence is represented by consistent measurements or non-consistent and 

non-disjoint measurements in the form of overlapping intervals.  

2. When evidence is in the form of sparse and unique point estimates.  

3. When evidence is available in the form of disjoint interval measurements. 

 Two novel methodologies were developed to construct possibility distributions 

from these three types of measurements. Due to the underlying difference in the structural 

form of each of these measurement types, separate methods had to be developed to derive 

the possibilistic histogram.  While consistent measurements are assumed to reflect 

evidence that is ambiguous (occurrence of the same value in two different sets), point 

estimates (also called singletons) and disjoint interval measurements are reflective of 

evidence that is conflicting (occurrence of two completely different values such as is the 

case for probabilistic models).   For consistent or overlapping measurements, evidence 

tends to confirm a certain set of recurring values; therefore possibility distributions were 
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derived through a new method, called Method I, based on the intersection of sets.  In 

contrast, in our Method II, since the measurements that are disjoint state the complete 

conflict in evidence, possibility distributions were derived using hierarchical clustering 

techniques based on similarity concepts and a distance metric.  Method II, which groups 

values similar to each other through the application of a cost function, was used along 

with possibilistic principles to derive intervals such that the possibilistic weights of each 

interval reflected the quantity of observed empirical data that actually supports this 

interval.  Through this process a discrete graded contour function that revealed the true 

uncertainty in the system was generated over the resulting consonant intervals.   

 It is also possible to use these two methods in combination when measurements 

are more general, i.e., they are not specifically of any one type outlined in the previous 

paragraph.  As shown in Figure 5-1, the measurements can be a collection of disjoint 

intervals, singletons, and non-disjoint and/or non-consistent intervals.  Such a collection 

can arise when measurements are derived from various sources and a possibility 

distribution needs to be constructed from these measurements.   In such a case, depending 

on the pattern of measurements, the two methods developed in this dissertation can be 

used separately without any modifications or they can be combined to provide a hybrid 

method where Method I can be used to generate a set of all the possible intersections and 

Method II can be used to cluster the intervals and generate a possibility distribution.   

 An issue to note in this hybrid approach, however, is that Method I usually results 

in a more constrained possibility distribution biased over all the consonant intervals while 

Method II results in a wider possibility distribution.  Method I yields a narrower and 

more tapered distribution due to the fact that the consonant intervals dominate the non-
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consonant intervals in the set of all intersections, and the weight is transferred from the 

non-consonant to the consonant portions.  This might be a desirable characteristic when 

one intends to let the evidence lead to the most possible value by assigning more weight 

to the consonant portion of the data and less weight to the non-consonant portion.  

Therefore, the data that supports and confirms other data sets is given more weight than 

that portion which is conflicting.  In contrast, Method II results in a wider distribution, 

and by virtue of the agglomerative nature of clustering can result in combining intervals 

that are consonant into one single interval.  This can result in losing the consonance of 

the intervals and can result in a distribution that tapers more gradually to the most 

possible.  Method II, however, results in a more uniform distribution of weight, and is 

more useful when consonance is assumed to be from the entire data set and no 

corroboration of evidence between measurements is assumed.  The choice of the methods 

is therefore dependent on the application, and the analyst should choose the appropriate 

method based on the intent of the analysis, measurement characteristics, and data content.  

   

  
� 

Observations 

 

Figure 5-1:  An example of a general collection of measurements.  
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The utility and the importance of the two new methods developed herein were 

illustrated through a meta-analysis case study in human health risk assessment that was 

conducted by pooling 8 individual studies to determine relative cancer risk values from 

residential exposure to radon gas.  It was shown through the comparison with results 

from the original meta-analysis study that possibility distributions are more natural 

representations of sparse imprecise information than are probability distributions.  In 

particular, possibility distributions allow an analyst to depict the state of the uncertainty 

more realistically by suggesting two measures, possibility and necessity.  It was shown 

that one could quantitatively interpret ambiguous and imprecise data, and portray what is 

known about the uncertainty through possibility distributions and then use these two new 

methods to find the bounds on the true value.   

Probability theory provides confidence limits to bound the true value.  In contrast, 

possibility theory offers possibility and necessity measures to bound the true value.  In 

comparison to probability theory, where the confidence limits denote the confidence in 

the range within which the true value can occur, the necessity value in possibility theory 

indicates the certainty with which an analyst can indicate that the true value lies in the 

interval.  Hence, probability theory assumes a probability distribution to characterize the 

random behavior in the system, whereas possibility theory assumes that an analyst is 

ambiguous about what the true outcome could be and therefore derives a distribution 

based on ambiguity and vagueness in the data. Based on this distinction, the first case 

study on radon gas exposure (Section 4.1.1.1) showed that using possibilistic analysis 

without any assumptions, one is only 25% certain (necessity is 0.25) in the interval that 

was derived using probability theory as the 95% confidence limit in the original study. 
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Another way of construing this necessity measure is that only 25% of the available 

evidence completely supports the occurrence of the true value being within the 95% 

confidence interval of the original study.  This indicates that using the available evidence, 

rather than requiring one to assume and infer from a random distribution, can yield much 

lower confidence in the results.   

To illustrate another distinction, in a possibility distribution the possibility of a 

particular value increases as it approaches the most possible value, with the possibility 

reaching 1.0 when the value lies in the most possible interval. The cumulative probability 

distribution function (CDF) superimposed over a possibility distribution (CDF shown as 

the dotted line in Figure 5-2) illustrates this difference between a possibility and 

probability distribution that were derived from the same empirical data set. For example, 

if the most possible value (within the interval where π=1) is representative of the mean of 

the data, then the possibilities of values close to the mean should be higher than those 

further from the mean.  This interpretation of the mean of the data, that which lies within 

the most possible interval, needs to be distinguished from the mean that is derived in the 

probabilistic sense.  In the latter case, the mean value occurs in 50% of the cases; in 

possibility the most possible interval simply asserts that there is a complete possibility of 

the value occurring.  Therefore, the mean value in the possibilistic model is an assertion 

that the most possible value lies in an interval that is closest to the mean and no other 

precision is assumed.  This lack of precision is not a reflection of inaccuracy but merely a 

reflection of the realities of the data.  

Now, from the CDF in Figure 5-2, the probability that the value would lie in the 
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range [0.2,0.3] is, 17.026.043.0)3.02.0( =−=≤≤ XP , while the possibility is 

7.0])3.0,2.0([ =Π .  Thus, the possibility of a value being the actual radon exposure 

increases as one tends towards the most possible value.  This higher value of possibility 

seems to be consistent with natural thought, in that, as one approaches the most likely 

value the possibility of that value should increase.  
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Figure 5-2:  Comparison of possibilistic and probabilistic results derived from the 
data set as given in Section 4.1.2.  The ordinate represents both possibility as well as 
cumulative probability.  The mean value from the CDF is 0.34, while the most 
possible value from the possibility distribution is in the interval [0.3, 0.38]. 

 

Therefore, by relying on what is revealed by the evidence, possibility distributions 

offer a more natural representation of uncertainty and reflect this uncertainty realistically 

through non-additive measures.  Due to their independence from the stricter law of 

additivity, possibility distributions can be derived from a wide range of measurement 

types and can be conveniently used to model uncertainty even when data is very sparsely 

available.  As shown in Section 4.1.2 of Chapter 4, possibility distributions can also be 

derived from large data sets where the ambiguity and vagueness result from interpretation 
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of the data and not from the measurements themselves.     

 

Future Research 

Though the research presented in this dissertation addresses one of the critical 

limitations of possibility theory, that of deriving possibility distributions from empirical 

data, there is more development that could be done.  Due to the flexibility of possibility 

theory to model the uncertainties from various kinds of data and its usefulness in complex 

systems, it is appropriate to further invest in its advancement so it can be more useful in 

practice rather than just being a theoretical exercise.  A list of the areas where the 

advancement can be beneficial to the scientific community is presented below.  This list 

is definitely not meant to be exhaustive, but only intended to identify some areas to 

initiate more research.   

• One of the promising areas of application of possibility theory is in regression 

analysis.  Regression techniques are often based on imprecise and ambiguous data 

and traditional methods of deriving point estimates for regression coefficients 

falls short of truly representing the uncertainty in the model.  Uncertainty in the 

traditional models is sometimes represented by assuming a distribution or through 

standard error terms that only capture randomness in the data. And current fuzzy 

regression techniques [Tanaka et al., 1982; Ross, 1995] derive regression 

coefficients as fuzzy sets or as possibility distributions that are based on 

parametric distributions and are derived using complex linear programming 
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methods. However, there is scope for further enhancements of these models to 

generate more generic and intuitive distributions. 

• Issues such as correlation between possibilistic variables, conditional dependency, 

possibilistic updating and combination need to be explored further in the context 

of empirical possibility distributions.  Currently, several techniques exist for those 

distributions that have more subjective interpretations [Sandri et al., 1995], 

however similar techniques need to be developed and validated for empirical 

distributions.  

• Techniques such as neural networks and genetic algorithms could offer other 

alternatives to developing nested interval structures.  For example, a neural 

network could be trained to extract possibilistic intervals and weights from 

empirical data.  

• There has been at least one research project on the use of uncertainty measures to 

facilitate the derivation of possibility distributions from Method I presented in this 

dissertation [Chavez, 2002], however, this effort was limited to consistent 

measurement types.  Further computational research that incorporates all the 

measurement types and other methods in this dissertation can assist in identifying 

the most optimal and appropriate possibility distributions. 

• In some models, a combination of distributions might be available, i.e., 

probabilistic distributions might be available on some variables while on some 

others possibilistic distributions might be known.  In such cases, it might be 

beneficial to develop an approach to propagate this combined information within 
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a system.  One idea might be to use Monte Carlo techniques with interval 

methods to propagate such combinations.   

• Finally, the methods developed in this dissertation were restricted to theoretical 

developments and therefore an apparent area of future work is the development of 

efficient computational methods to implement the algorithms.   
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APPENDIX A - Summary of epidemiological studies used in the case 
study 

Figure A - 1: Relative risk values and the fitted exposure response models for each 
of the 8 residential epidemiological studies [Lubin and Boice, 1997]. The data from 
these curves was used in case study outlined in Section 4.1.1. 
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APPENDIX B - Mathematical Notation 

i, j, k: Arbitrary indices 

m : Mass on random sets or random intervals 

p:  Probability mass function 

w :  weights on observed measurements 

x : Singletons on a real line 

cx : Anchor for singleton measurements 

UL xx , : End points of a random interval defined on a real line ℜ  

A :  Random interval or an event 

A
~ : Fuzzy set 

λA : λ -cut interval on a fuzzy membership function  

B: Random intervals derived from conjunction of observed measurements 

Bel:  Belief measure 

C: Consonant intervals derived from disjoint measurements 

F : Focal set 

G: A set formed by a collection of B 

H: Consonant set derived from intersections of original measurements  

I:  Non-consonant set derived from intersections of original measurements 

K:  1-K is the normalization factor in Dempster-Shafer theory 

M: Number of observed measurements 

N: Number of random intervals for which 0>m  
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O: Disjoint measurement intervals 

ONew: New interval formed by aggregating original disjoint measurements 

P:  Probability measure 

Pl:  Plausibility measure 

Q:  Total number of intersecting sets derived from original measurements 

QH: Number of consonant sets in Q 

QI:  Number of non-consonant sets in Q 

S: Support of a possibility distribution 

SR: Random set 

X: Universe of discourse on the real line 

aX : Anchor for disjoint interval measurements 

ℑ : σ -algebra 

)(Ω℘ : Power set on Ω  

ℜ  : Set of real numbers 

β : Similarity function in the context of possibility distributions 

δ : Distance metric 

η : Normalized ν  

κ : Redistribution factor 

µ : Fuzzy membership function 

ν : Weights on B 

π : Possibility distribution 

ρ : Redistribution weight 
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υ : Fuzzy measure 

ω :  Elements of Ω  

∆ : Cost function 

Ν : Necessity measure 

 Π : Possibility measure 

Ω :  Universe of discourse 
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